%I #12 Apr 12 2023 11:40:48
%S 1,9,72,576,4608,36864,294912,2359296,18874368,150994944,1207959552,
%T 9663676416,77309411328,618475290588,4947802324416,39582418593060,
%U 316659348726336,2533274789665536,20266198316163072,162129586520014848
%N Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
%C The initial terms coincide with those of A003951, although the two sequences are eventually different.
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A166924/b166924.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
%F G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
%t CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 28 2016 *)
%t coxG[{13,28,-7}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Apr 12 2023 *)
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009