login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1

%I #12 Jul 24 2017 12:51:17

%S 1,32,992,30752,953312,29552672,916132832,28400117792,880403651552,

%T 27292513198112,846067909141472,26228105183385632,813071260684954096,

%U 25205209081233561600,781361481518239933440,24222205927065423175680

%N Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

%C The initial terms coincide with those of A170751, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A166622/b166622.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).

%F G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^12 - 30*t^11 - 30*t^10 - 30*t^9 -30*t^8 -30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t +1).

%t CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 19 2016 *)

%t coxG[{12,465,-30}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jul 24 2017 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009