login
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1

%I #21 Jul 23 2024 15:04:46

%S 1,15,210,2940,41160,576240,8067360,112943040,1581202560,22136835840,

%T 309915701760,4338819824535,60743477542020,850408685567805,

%U 11905721597662620,166680102363263580,2333521433029506720

%N Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

%C The initial terms coincide with those of A170734, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A166382/b166382.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (13,13,13,13,13,13,13,13,13,13,-91).

%F G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).

%F From _G. C. Greubel_, Jul 23 2024: (Start)

%F a(n) = 13*Sum_{j=1..10} a(n-j) - 91*a(n-11).

%F G.f.: (1+x)*(1 - x^11)/(1 - 14*x + 104*x^11 - 91*x^12). (End)

%t With[{a=91, b=13}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(b+1)*t +(a+b)*t^11-a*t^12), {t,0,40}], t]] (* _G. C. Greubel_, May 10 2016; Jul 23 2024 *)

%t coxG[{11,91,-13}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jan 25 2019 *)

%o (Magma)

%o R<x>:=PowerSeriesRing(Integers(), 30);

%o Coefficients(R!( (1+x)*(1-x^11)/(1-14*x+104*x^11-91*x^12) )); // _G. C. Greubel_, Jul 23 2024

%o (SageMath)

%o def A166382_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x)*(1-x^11)/(1-14*x+104*x^11-91*x^12) ).list()

%o A166382_list(30) # _G. C. Greubel_, Jul 23 2024

%Y Cf. A154638, A169452, A170734.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009