login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heptasection A061037(7*n+2).
5

%I #32 Oct 08 2024 06:24:34

%S 0,77,63,525,56,1365,483,2597,210,4221,1295,6237,462,8645,2499,11445,

%T 812,14637,4095,18221,1260,22197,6083,26565,1806,31325,8463,36477,

%U 2450,42021,11235,47957,3192,54285,14399,61005,4032,68117,17955,75621,4970

%N Heptasection A061037(7*n+2).

%C The (2k+1)-sections A061037((2*k+1)*n+2) are multiples of 2k+1:

%C 0,...21,...15,..117,...12,..285,...99,..525,...42,..837,..255, k=1, A142590

%C 0,...45,...35,..285,...30,..725,..255,.1365,..110,.2205,..675, k=2, A165248

%C 0,...77,...63,..525,...56,.1365,..483,.2597,..210,.4221,.1295, k=3, here

%C 0,..117,...99,..837,...90,.2205,..783,.4221,..342,.6885,.2115, k=4,

%C 0,..165,..143,.1221,..132,.3245,.1155,.6237,..506,10197,.3135, k=5

%C 0,..221,..195,.1677,..182,.4485,.1599,.8645,..702,14157,.4355, k=6

%C After division by 2k+1 these define a table T'(k,c) :

%C 0,....7,....5,...39,....4,...95,...33,..175,...14,..279,...85, k=1, A142883

%C 0,....9,....7,...57,....6,..145,...51,..273,...22,..441,..135, k=2

%C 0,...11,....9,...75,....8,..195,...69,..371,...30,..603,..185, k=3

%C 0,...13,...11,...93,...10,..245,...87,..469,...38,..765,..235, k=4

%C 0,...15,...13,..111,...12,..295,..105,..567,...46,..927,..285, k=5

%C 0,...17,...15,..129,...14,..345,..123,..665,...54,.1089,..335, k=6

%C Differences downwards each second column in this second table are 2 = 7-5 = 9-7..; 18 = 57-39 = 75-57..; 50 = 145-95 = 195-145... = A077591(n+1) = 2*A016754.

%C The difference T'(k+1,c)-T'(k,c) is 0, 2, 2, 18, 2, 50, 18, 98, 8 ... = 2*A181318(c) =A061037(c-2)+A061037(c+2). - _Paul Curtz_, Mar 12 2012

%C Let b(n)= a(n) mod 11. The sequence b(n) has the property b(n+44) = b(n) with the first 43 values being {0, 0 , 8, 1, 1, 10, 1, 1, 8, 8, 0, 0, 10, 5, 5, 9, 7, 1, 5, 6, 10, 7, 0, 2, 1, 1, 8, 1, 5, 8, 2, 0, 8, 10, 6, 5, 10, 7, 9, 5, 0, 10, 0}. - _G. C. Greubel_, Apr 18 2016

%H G. C. Greubel, <a href="/A165943/b165943.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>12. - Conjectured by _R. J. Mathar_, Mar 02 2010, proved by _Robert Israel_, Apr 20 2016

%F From _Ilya Gutkovskiy_, Apr 19 2016: (Start)

%F G.f.: 7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3).

%F a(n) = -7*n*(7*n + 4)*(27*(-1)^n + 6*cos((Pi*n)/2) - 37)/64. (End)

%p seq(numer(1/4 - 1/(7*n+2)^2), n=0..50); # _Robert Israel_, Apr 20 2016

%t Table[Numerator[1/4 - 1/(7 n + 2)^2], {n, 0, 40}] (* _Michael De Vlieger_, Apr 19 2016 *)

%t CoefficientList[Series[7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 19 2018 *)

%o (PARI) a(n) = numerator(1/4 - 1/(7*n+2)^2); \\ _Altug Alkan_, Apr 18 2016

%o (PARI) x='x+O('x^50); concat([0], Vec(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))) \\ _G. C. Greubel_, Sep 19 2018

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))); // _G. C. Greubel_, Sep 19 2018

%K nonn,less

%O 0,2

%A _Paul Curtz_, Oct 01 2009

%E Partially edited and extended by _R. J. Mathar_, Mar 02 2010

%E Removed division by 7 in definition and formula - _R. J. Mathar_, Mar 23 2010