Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Feb 16 2022 23:36:13
%S 4,100,3364,114244,3880900,131836324,4478554084,152139002500,
%T 5168247530884,175568277047524,5964153172084900,202605639573839044,
%U 6882627592338442564,233806732499933208100,7942546277405390632804,269812766699283348307204,9165691521498228451812100,311363698964240484013304164
%N Perfect squares (A000290) that can be expressed as the sum of four consecutive triangular numbers (A000217).
%C As T(n) + T(n+1) = (n+1)^2 and T(n+2) + T(n+3) = (n+3)^2, it follows that the equation T(n) + T(n+1) + T(n+2) + T(n+3) = s^2 becomes (n+1)^2 + (n+3)^2 = s^2. Hence the solutions to this equation correspond to those Pythagorean triples with shorter legs that differ by two, such as 6^2 + 8^2 = 10^2.
%C Terms are the squares of the hypotenuses of Pythagorean triangles where other two sides are m and m+2, excepting the initial 4. See A075870. - _Richard R. Forberg_, Aug 15 2013
%H Harvey P. Dale, <a href="/A165518/b165518.txt">Table of n, a(n) for n = 1..600</a>
%H Tom Beldon and Tony Gardiner, <a href="http://www.jstor.org/stable/3621134">Triangular Numbers and Perfect Squares</a>, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).
%F a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
%F a(n) = 34*a(n-1) - a(n-2) - 32.
%F a(n) = (2 + (3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1))/2.
%F a(n) = ceiling((1/2)*(2 + (3+2*sqrt(2))^(2n+1))).
%F G.f.: 4*x*(x^2-10*x+1)/((1-x)*(x^2-34*x+1)).
%F a(n) = 4*A008844(n-1). - _R. J. Mathar_, Dec 14 2010
%F a(n) = A075870(n)^2. - _Richard R. Forberg_, Aug 15 2013
%e As the third perfect square that can be expressed as the sum of four consecutive triangular numbers is 3364 = T(39) + T(40) + T(41) + T(42), we have a(3)=3364.
%e The first term, 4, equals T(-1) + T(0) + T(1) + T(2).
%p A165518:=n->(1/2)*(2+(3+2*sqrt(2))^(2*n+1)+(3-2*sqrt(2))^(2*n+1)); seq(A165518(k), k=1..20); # _Wesley Ivan Hurt_, Oct 24 2013
%t TriangularNumber[n_]:=1/2 n (n+1); data=Select[Range[10^7],IntegerQ[Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1]+TriangularNumber[ #+2]+TriangularNumber[ #+3]]] &];2(#^2+4#+5)&/@data
%t t={4, 100}; Do[AppendTo[t, 34 t[[-1]] - t[[-2]] - 32], {20}]; t
%t LinearRecurrence[{35,-35,1},{4,100,3364},20] (* _Harvey P. Dale_, May 22 2012 *)
%o (PARI) x='x+O('x^50); Vec(4*x*(1-10*x+x^2)/((1-x)*(1-34*x+x^2))) \\ _G. C. Greubel_, Oct 21 2018
%o (Magma) I:=[4,100,3364]; [n le 3 select I[n] else 35*Self(n-1) - 35*Self(n-2) +Self(n-3): n in [1..50]]; // _G. C. Greubel_, Oct 21 2018
%Y Cf. A000290, A000217, A165516 (squares that can be expressed as the sum of three consecutive triangular numbers), A029549, A075870.
%K easy,nice,nonn
%O 1,1
%A _Ant King_, Sep 28 2009
%E Extended by _T. D. Noe_, Dec 09 2010