Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Sep 08 2022 08:45:47
%S 1,7,35,259,1211,9667,41195,364819,1365371,13957027,43388555,
%T 542806579,1279512731,21518363587,32221171115,871550099539,
%U 481739087291,36123365093347,-15890323427125,1533071657347699,-2200465241286949
%N a(0)=1, a(1)=7, a(n) = 42*a(n-2) - a(n-1).
%C a(n)/a(n-1) tends to -7.
%H G. C. Greubel, <a href="/A165505/b165505.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,42).
%F G.f.: (1+8*x)/(1+x-42*x^2).
%F a(n) = Sum_{k=0..n} A112555(n,k)*6^k.
%F a(n) = (14*6^n-(-7)^n)/13. - _Klaus Brockhaus_, Sep 26 2009
%F E.g.f.: (14*exp(6*x) - exp(-7*x))/13. - _G. C. Greubel_, Oct 20 2018
%p A165505:=n->(14*6^n-(-7)^n)/13: seq(A165505(n), n=0..30); # _Wesley Ivan Hurt_, Apr 14 2017
%t LinearRecurrence[{-1, 42}, {1, 7}, 40] (* _G. C. Greubel_, Oct 20 2018 *)
%o (PARI) vector(40, n, n--; (14*6^n-(-7)^n)/13) \\ _G. C. Greubel_, Oct 20 2018
%o (Magma) [(14*6^n-(-7)^n)/13: n in [0..40]]; // _G. C. Greubel_, Oct 20 2018
%K easy,sign
%O 0,2
%A _Philippe Deléham_, Sep 21 2009