%I #7 Sep 21 2022 13:28:17
%S 1,1,2,1,4,5,4,6,1,4,3,1,8,5,3,1,5,4,4,6,2,5,3,1,5,4,1,4,2,2,4,6,2,5,
%T 3,1,5,1,3,4,4,4,4,4,2,2,4,6,2,5,3,1,3,1,9,9,3,4,4,4,4,4,2,2,4,6,2,5,
%U 3,1,5,5,3,1,6,6,2,6,3,3,1,9,9,3,4,4,4,4,4,2,2,4,6,2,5,3,1,11,5,3,1,11,11
%N Length of cycle mentioned in A165041
%H Joseph Myers, <a href="/A165042/b165042.txt">Table of n, a(n) for n=1..15716</a>
%H Anthony Kay and Katrina Downes-Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Kay/kay5.html">Fixed Points and Cycles of the Kaprekar Transformation: 1. Odd Bases</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.6.7.
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%Y Cf. A165032, A165041, A165038, A165040, A165044, A165050.
%Y In other bases: A000012 (base 2), A165003 (base 3), A165022 (base 4), A165061 (base 6), A165081 (base 7), A165100 (base 8), A165120 (base 9), A164719 (base 10).
%K base,nonn
%O 1,3
%A _Joseph Myers_, Sep 04 2009