

A164928


Sum of the odd prime divisors of numbers whose odd prime divisors are all of the form 4k+3.


4



3, 3, 7, 3, 11, 3, 7, 3, 19, 10, 11, 23, 3, 3, 7, 31, 14, 3, 19, 10, 43, 11, 23, 47, 3, 7, 3, 7, 22, 59, 31, 10, 14, 67, 26, 71, 3, 19, 18, 79, 3, 83, 10, 43, 11, 23, 34, 47, 3, 7, 14, 103, 107, 3, 7, 22, 59, 11, 31, 10, 127, 46, 131, 14, 26, 67, 26, 139, 50, 71, 3, 10, 151, 19, 18
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

We define a sequence b(n) = 3, 6, 7, 9, 11, 12, 14, 18, 19, 21, 22, 23, ... to consist of those numbers where all odd prime factors are primes contained in A002145, and which have at least one prime factor in this class; b(n) is basically A004144 without the powers of 2.
a(n) is the sum of the distinct odd prime factors of b(n), where "distinct" means that the multiplicity (exponent) in the prime factorization of b(n) is ignored.
Analogous sequence for primes of form 4k+1 is A164927.
Analogous sequence for primes of form 6k+1 is A164929.
Analogous sequence for primes of form 6k+5 is A164930.


LINKS



EXAMPLE

a(11) = 10 because b(11) = 21 = 3*7, and 3+7 = 10.
The smallest nonprime number, all of whose prime factors are of form 4n+3, whose sum of distinct prime factors is prime: b(181) = 3*7*19 = 399; 3+7+19 = 29.


MAPLE

isb := proc(n) fs := numtheory[factorset](n) minus {2} ; if fs = {} then RETURN(false); else for f in fs do if op(1, f) mod 4 <> 3 then RETURN(false) ; fi; od: RETURN(true) ; fi; end:
b := proc(n) if n = 1 then 3; else for a from procname(n1)+1 do if isb(a) then RETURN(a) ; fi; od: fi; end:
A164928 := proc(n) local f; numtheory[factorset]( b(n)) minus {2} ; add(f, f=%) ; end: seq(A164928(n), n=1..120) ; # R. J. Mathar, Sep 08 2009


MATHEMATICA

sopd[n_]:=Module[{ff=Select[Transpose[FactorInteger[n]][[1]], OddQ]}, If[ And@@ (Mod[#, 4]==3&/@ff), Total[ff], 0]]; Select[Array[sopd, 200], #>0&] (* Harvey P. Dale, Dec 16 2013 *)


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



EXTENSIONS



STATUS

approved



