A NEW INTERPRETATION OF HULTMAN NUMBERS

REINA ISHIKAWA*, TSUYOSHI MIEZAKI, AND YUUHO TANAKA

ABSTRACT. In this short note, we provide a new interpretation of Hultman numbers $S_H(2n-2,1)$ in OEIS "A164652".

Key Words: Spanning trees, Hultman numbers, matrix tree theorem. 2010 *Mathematics Subject Classification*. Primary 05C30; Secondary 05C50.

1. INTRODUCTION

In this short note, we provide a new interpretation of Hultman numbers $S_H(2n-2,1)$. $S_H(2n-2,1)$ denotes the number of spanning trees of an infinite series of graphs.

We recall Hultman numbers $S_H(n,k)$ [2, 1]. Let S_n be the permutation group with respect to $\{1, 2, ..., n\}$. For $\pi \in S_n$, $\pi_i = \pi(i)$.

Definition 1.1 ([2, Definitions 3 and 4]). The cycle graph of a permutation $\pi \in S_n$ is the bicolored directed graph $G(\pi)$ with vertex set $\{\pi_0 = 0, \pi_1, \ldots, \pi_n\}$ and its edge set consists of

- black edges $(\pi_i, \pi(i_1) \pmod{n+1})$ for $0 \le i \le n$, and
- grey edges $(i, (i+1) \pmod{n+1})$ for $0 \le i \le n$.

The Hultman number $S_H(n, k)$ counts the number of permutations in S_n whose cycle graph decomposes into k alternating cycles. Thus,

$$S_H(n,k) = |\{\pi \in S_n \mid c(G(\pi)) = k\}|,\$$

where $c(G(\pi))$ is the number of cycles in $G(\pi)$.

Let $G_n = (V_n, E_n)$ be a simple graph that satisfies the following conditions:

- $V_n = \{a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}, \dots, a_{n,1}, a_{n,2}\}.$
- For all $\ell \in \{1, 2, ..., n\}$, there is no edge between $a_{\ell,1}$ and $a_{\ell,2}$.
- The set of degrees is $\{0, 1, \dots, n-1, n-1, n, \dots, 2n-2\}$.

It is easy to see that G_n is uniquely determined by these conditions. (See Appendix A.)

The main result of this short note is as follows:

^{*}Corresponding author.

Theorem 1.1. Let $G_n \setminus v_0$ be a graph in which the degree 0 vertex has been deleted and $\tau(G_n \setminus v_0)$ is the number of spanning trees of $G_n \setminus v_0$. Then we have

$$\tau(G_n \setminus v_0) = \frac{(2(n-1))!}{n} = S_H(2n-2,1).$$

(See also Appendix B and C.)

In the next section, we provide a proof of Theorem 1.1.

2. Proof of Theorem 1.1

Let v_1 be the degree one vertex and \widetilde{G}_n be the graph in which v_1 has been deleted and the edge adjacent to v_1 from $G_n \setminus v_0$ has been deleted. It is sufficient to show that the number of spanning trees of \widetilde{G}_n is $S_H(2n-2,1)$.

We note that there exist two degree 2n-3 vertices. Let L_n be a matrix in which the row indexed by the degree 2n-3 vertex and the column indexed by another degree 2n-3 vertex have been deleted from the Laplacian matrix of \tilde{G}_n . \tilde{L}_n can be written as follows:

Γ-1	-1	-1	-1	• • •	• • •	• • •	۲ ۰۰۰	
*	2n - 4	0	-1	-1	• • •	•••		
*	*	2	0	0	0	•••		
*	*	*	2n - 5	0	-1	$^{-1}$		
*	*	*	*	3	0	0		·
						·		
*	*	*	*	*	*	n-1	0	
L *	*	*	*	*	*	*	n-1	
	* * *	* * * *	* * 2 * * * * * * * * *	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} * & * & 2 & 0 & 0 \\ * & * & * & 2n-5 & 0 \\ * & * & * & * & 3 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} * & * & 2 & 0 & 0 & 0 & \cdots \\ * & * & * & 2n-5 & 0 & -1 & -1 \\ * & * & * & * & 3 & 0 & 0 \end{vmatrix}$	

By the matrix tree theorem, it is sufficient to compute the determinant of \widetilde{L}_n .

In fact, by checking the direct computations, we have the following complete list of eigenvalues and their eigenvectors of \widetilde{L}_n :

-	-
Eigenvalue	Eigenvector
$(1+\sqrt{8n-7})/2$	$[(3-\sqrt{8n-7})/2,1,\ldots,1]$
$(1-\sqrt{8n-7})/2$	$[(3+\sqrt{8n-7})/2,1,\ldots,1]$
2n - 3	$[0, -(2n-6), 0, 1, 1, \dots, 1]$
2n - 4	$[0, 0, 0, -(2n-8), 0, 1, 1, \dots, 1]$
÷	
n+1	$[0,0,\ldots,0,-2,0,1,1]$
n-1	$[0,0,\ldots,0,0,-1,1]$
n-2	$[0,0,\ldots,0,1,-3,1,1]$
n-3	$[0,0,\ldots,0,1,-5,1,1,1]$
:	
2	[0, 1, -(2n-5), 1, 1, 1]

Then by the matrix tree theorem,

$$\tau(G_n \setminus v_0) = |\det(\widetilde{L}_n)|$$

= $-\frac{1}{2}(1 + \sqrt{8n - 7})\frac{1}{2}(1 - \sqrt{8n - 7})$
 $(2n - 3)(2n - 4) \cdots (n + 1)$
 $(n - 1)(n - 2) \cdots 2$
= $\frac{(2(n - 1))!}{n} = S_H(2n - 2, 1).$

This completes the proof of Theorem 1.1.

- **Remark 2.1.** (1) Is there a bijective proof of Theorem 1.1; that is, can we construct a bijection between $\{\pi \in S_{2n-2} \mid c(G(\pi)) = 1\}$ and the set of spanning trees of $G_n \setminus v_0$?
 - (2) For all n, k, is $S_H(n, k)$ the number of spanning trees of some infinite series of graphs $G_{n,k}$?

Appendix B. Spanning trees of $G_3 \setminus v_0$

Appendix C. Elements of $\{\pi \in S_4 \mid c(G(\pi)) = 1\}$ (2143) | (2413) | (2431) | (3142) | (3241) | (4132) | (4213) | (4321)

Acknowledgments

This work was supported by JSPS KAKENHI (22K03277). We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

References

- J.P. Doignon, A. Labarre, On Hultman numbers. J. Integer Seq. 10 (2007), no. 6, Article 07.6.2, 13 pp.
- [2] A. Hultman, Toric permutations, Master's thesis, Department of Mathematics, KTH, Stockholm, Sweden, 1999.

FACULTY OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, TOKYO 169-8555, JAPAN,

Email address: reina.i@suou.waseda.jp

Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan,

Email address: miezaki@waseda.jp

Graduate School of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan

Email address: tanaka_yuuho_dc@akane.waseda.jp