A NEW INTERPRETATION OF HULTMAN NUMBERS

REINA ISHIKAWA*, TSUYOSHI MIEZAKI, AND YUUHO TANAKA

Abstract. In this short note, we provide a new interpretation of Hultman numbers $S_{H}(2 n-2,1)$ in OEIS "A164652".

Key Words: Spanning trees, Hultman numbers, matrix tree theorem. 2010 Mathematics Subject Classification. Primary 05C30; Secondary 05C50.

1. Introduction

In this short note, we provide a new interpretation of Hultman numbers $S_{H}(2 n-2,1) . \quad S_{H}(2 n-2,1)$ denotes the number of spanning trees of an infinite series of graphs.

We recall Hultman numbers $S_{H}(n, k)[2,1]$. Let S_{n} be the permutation group with respect to $\{1,2, \ldots, n\}$. For $\pi \in S_{n}, \pi_{i}=\pi(i)$.

Definition 1.1 ([2, Definitions 3 and 4]). The cycle graph of a permutation $\pi \in S_{n}$ is the bicolored directed graph $G(\pi)$ with vertex set $\left\{\pi_{0}=\right.$ $\left.0, \pi_{1}, \ldots, \pi_{n}\right\}$ and its edge set consists of

- black edges $\left(\pi_{i}, \pi\left(i_{1}\right)(\bmod n+1)\right)$ for $0 \leq i \leq n$, and
- grey edges $(i,(i+1)(\bmod n+1))$ for $0 \leq i \leq n$.

The Hultman number $S_{H}(n, k)$ counts the number of permutations in S_{n} whose cycle graph decomposes into k alternating cycles. Thus,

$$
S_{H}(n, k)=\left|\left\{\pi \in S_{n} \mid c(G(\pi))=k\right\}\right|,
$$

where $c(G(\pi))$ is the number of cycles in $G(\pi)$.
Let $G_{n}=\left(V_{n}, E_{n}\right)$ be a simple graph that satisfies the following conditions:

- $V_{n}=\left\{a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}, \ldots, a_{n, 1}, a_{n, 2}\right\}$.
- For all $\ell \in\{1,2, \ldots, n\}$, there is no edge between $a_{\ell, 1}$ and $a_{\ell, 2}$.
- The set of degrees is $\{0,1, \ldots, n-1, n-1, n, \ldots, 2 n-2\}$.

It is easy to see that G_{n} is uniquely determined by these conditions. (See Appendix A.)

The main result of this short note is as follows:

[^0]Theorem 1.1. Let $G_{n} \backslash v_{0}$ be a graph in which the degree 0 vertex has been deleted and $\tau\left(G_{n} \backslash v_{0}\right)$ is the number of spanning trees of $G_{n} \backslash v_{0}$. Then we have

$$
\tau\left(G_{n} \backslash v_{0}\right)=\frac{(2(n-1))!}{n}=S_{H}(2 n-2,1) .
$$

(See also Appendix B and C.)
In the next section, we provide a proof of Theorem 1.1.

2. Proof of Theorem 1.1

Let v_{1} be the degree one vertex and \widetilde{G}_{n} be the graph in which v_{1} has been deleted and the edge adjacent to v_{1} from $G_{n} \backslash v_{0}$ has been deleted. It is sufficient to show that the number of spanning trees of \widetilde{G}_{n} is $S_{H}(2 n-2,1)$.

We note that there exist two degree $2 n-3$ vertices. Let \widetilde{L}_{n} be a matrix in which the row indexed by the degree $2 n-3$ vertex and the column indexed by another degree $2 n-3$ vertex have been deleted from the Laplacian matrix of $\widetilde{G}_{n} . \widetilde{L}_{n}$ can be written as follows:

$$
\widetilde{L}_{n}=\left[\begin{array}{cccccccc}
-1 & -1 & -1 & -1 & \cdots & \cdots & \cdots & \cdots \\
* & 2 n-4 & 0 & -1 & -1 & \cdots & \cdots & \cdots \\
* & * & 2 & 0 & 0 & 0 & \cdots & \cdots \\
* & * & * & 2 n-5 & 0 & -1 & -1 & \cdots \\
* & * & * & * & 3 & 0 & 0 & \cdots \\
* & * & * & * & * & \ddots & \ddots & \cdots \\
* & * & * & * & * & * & n-1 & 0 \\
* & * & * & * & * & * & * & n-1
\end{array}\right] .
$$

By the matrix tree theorem, it is sufficient to compute the determinant of \widetilde{L}_{n}.

In fact, by checking the direct computations, we have the following complete list of eigenvalues and their eigenvectors of \widetilde{L}_{n} :

Eigenvalue	Eigenvector
$(1+\sqrt{8 n-7}) / 2$	$[(3-\sqrt{8 n-7}) / 2,1, \ldots, 1]$
$(1-\sqrt{8 n-7}) / 2$	$[(3+\sqrt{8 n-7}) / 2,1, \ldots, 1]$
$2 n-3$	$[0,-(2 n-6), 0,1,1, \ldots, 1]$
$2 n-4$	$[0,0,0,-(2 n-8), 0,1,1, \ldots, 1]$
\vdots	\vdots
$n+1$	$[0,0, \ldots, 0,-2,0,1,1]$
$n-1$	$[0,0, \ldots, 0,0,-1,1]$
$n-2$	$[0,0, \ldots, 0,1,-3,1,1]$
$n-3$	$[0,0, \ldots, 0,1,-5,1,1,1]$
\vdots	\vdots
2	$[0,1,-(2 n-5), 1,1 \ldots, 1]$

Then by the matrix tree theorem,

$$
\begin{aligned}
\tau\left(G_{n} \backslash v_{0}\right)= & \left|\operatorname{det}\left(\widetilde{L}_{n}\right)\right| \\
= & -\frac{1}{2}(1+\sqrt{8 n-7}) \frac{1}{2}(1-\sqrt{8 n-7}) \\
& (2 n-3)(2 n-4) \cdots(n+1) \\
& (n-1)(n-2) \cdots 2 \\
= & \frac{(2(n-1))!}{n}=S_{H}(2 n-2,1)
\end{aligned}
$$

This completes the proof of Theorem 1.1.

Remark 2.1. (1) Is there a bijective proof of Theorem 1.1; that is, can we construct a bijection between $\left\{\pi \in S_{2 n-2} \mid c(G(\pi))=1\right\}$ and the set of spanning trees of $G_{n} \backslash v_{0}$?
(2) For all n, k, is $S_{H}(n, k)$ the number of spanning trees of some infinite series of graphs $G_{n, k}$?

G_{3}| Appendix A. G_{3} And G_{4} |
| :---: |
| G_{4} |

Appendix B. Spanning trees of $G_{3} \backslash v_{0}$

> Appendix C. Elements of $\left\{\pi \in S_{4} \mid c(G(\pi))=1\right\}$ $(2143)|(2413)|(2431)|(3142)|(3241)|(4132)|(4213) \mid(4321)$

Acknowledgments

This work was supported by JSPS KAKENHI (22K03277). We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

References

[1] J.P. Doignon, A. Labarre, On Hultman numbers. J. Integer Seq. 10 (2007), no. 6, Article 07.6.2, 13 pp.
[2] A. Hultman, Toric permutations, Master's thesis, Department of Mathematics, KTH, Stockholm, Sweden, 1999.

Faculty of Science and Engineering, Waseda University, Tokyo 1698555, JAPAN,

Email address: reina.i@suou.waseda.jp
Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan,

Email address: miezaki@waseda.jp
Graduate School of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan

Email address: tanaka_yuuho_dc@akane.waseda.jp

[^0]: *Corresponding author.

