login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164413
Number of binary strings of length n with no substrings equal to 0000, 0001 or 1001.
1
1, 2, 4, 8, 13, 22, 36, 58, 94, 152, 246, 398, 644, 1042, 1686, 2728, 4414, 7142, 11556, 18698, 30254, 48952, 79206, 128158, 207364, 335522, 542886, 878408, 1421294, 2299702, 3720996, 6020698, 9741694, 15762392, 25504086, 41266478, 66770564, 108037042
OFFSET
0,2
COMMENTS
Essentially the same as A022112. - R. J. Mathar, Nov 30 2011
LINKS
David A. Corneth, Table of n, a(n) for n = 0..1999 (terms n = 4..500 from R. H. Hardin)
FORMULA
From Colin Barker, Oct 27 2017: (Start)
G.f.: -(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1).
a(n) = 2*(((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n) for n>4.
a(n) = a(n-1) + a(n-2) for n>6.
(End)
PROG
(PARI) Vec(-(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1) + O(x^50)) \\ Colin Barker, Oct 27 2017
(PARI) first(n) = {my(start = [1, 2, 4, 8, 13, 22, 36]); if(n <= 7, return(vector(n+1, i, start[i]))); res = concat(start, vector(n-7)); for(i=8, n,
res[i] = res[i-1] + res[i-2]); res} \\ David A. Corneth, Oct 27 2017
CROSSREFS
Sequence in context: A291553 A330153 A244985 * A164441 A338761 A023600
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Aug 14 2009
STATUS
approved