Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 02 2017 02:23:25
%S 13,22,37,60,98,160,259,420,681,1102,1784,2888,4673,7562,12237,19800,
%T 32038,51840,83879,135720,219601,355322,574924,930248,1505173,2435422,
%U 3940597,6376020,10316618,16692640,27009259,43701900,70711161,114413062
%N Number of binary strings of length n with no substrings equal to 0000 0001 or 0111.
%H G. C. Greubel, <a href="/A164412/b164412.txt">Table of n, a(n) for n = 4..1000</a> (terms 4..500 from R. H. Hardin)
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,-1,-1).
%F G.f.: -x^4*(-13-9*x-2*x^2+12*x^3+8*x^4)/( (x-1)*(1+x+x^2)*(x^2+x-1) ). - _R. J. Mathar_, Nov 30 2011
%t Rest[Rest[Rest[Rest[CoefficientList[Series[-x^4*(-13 - 9*x - 2*x^2 + 12*x^3 + 8*x^4)/((x - 1)*(1 + x + x^2)*(x^2 + x - 1)), {x, 0, 50}], x]]]]] (* _G. C. Greubel_, Oct 01 2017 *)
%o (PARI) x='x+O('x^50); Vec(-x^4*(-13-9*x-2*x^2+12*x^3+8*x^4)/( (x-1)*(1+x+x^2)*(x^2+x-1) )) \\ _G. C. Greubel_, Oct 01 2017
%K nonn
%O 4,1
%A _R. H. Hardin_, Aug 14 2009