login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164412
Number of binary strings of length n with no substrings equal to 0000 0001 or 0111.
1
13, 22, 37, 60, 98, 160, 259, 420, 681, 1102, 1784, 2888, 4673, 7562, 12237, 19800, 32038, 51840, 83879, 135720, 219601, 355322, 574924, 930248, 1505173, 2435422, 3940597, 6376020, 10316618, 16692640, 27009259, 43701900, 70711161, 114413062
OFFSET
4,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 4..1000 (terms 4..500 from R. H. Hardin)
FORMULA
G.f.: -x^4*(-13-9*x-2*x^2+12*x^3+8*x^4)/( (x-1)*(1+x+x^2)*(x^2+x-1) ). - R. J. Mathar, Nov 30 2011
MATHEMATICA
Rest[Rest[Rest[Rest[CoefficientList[Series[-x^4*(-13 - 9*x - 2*x^2 + 12*x^3 + 8*x^4)/((x - 1)*(1 + x + x^2)*(x^2 + x - 1)), {x, 0, 50}], x]]]]] (* G. C. Greubel, Oct 01 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(-x^4*(-13-9*x-2*x^2+12*x^3+8*x^4)/( (x-1)*(1+x+x^2)*(x^2+x-1) )) \\ G. C. Greubel, Oct 01 2017
CROSSREFS
Sequence in context: A162245 A159302 A172187 * A164472 A164446 A164506
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 14 2009
STATUS
approved