%I #11 Dec 09 2024 01:57:06
%S 3,19,59,89,109,149,151,317,331,359,389,401,439,571,599,829,941,953,
%T 1019,1153,1249,1279,1319,1373,1381,1451,1657,1669,1733,1741,1867,
%U 1871,1973,2131,2161,2179,2251,2459,2819,3119,3539,3659,3967,4001,4099,4231,4261
%N Primes which are an eighth of the sum of two consecutive primes.
%C Primes of the form A001043(k)/8.
%H Robert Israel, <a href="/A164132/b164132.txt">Table of n, a(n) for n = 1..10000</a>
%e 19 is there because it is prime and 19=(73+79)/8.
%p p:= 2: R:= NULL: count:= 0:
%p while count < 100 do
%p q:= p; p:= nextprime(p);
%p v:= (q+p)/8;
%p if v::integer and isprime(v) then
%p R:= R,v; count:= count+1;
%p fi;
%p od:
%p R; # _Robert Israel_, Dec 08 2024
%t Select[Total[#]/8&/@Partition[Prime[Range[2500]],2,1],PrimeQ] (* _Harvey P. Dale_, Apr 22 2011 *)
%Y Cf. A000040, A118134, A163487.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Aug 11 2009
%E Extended by _R. J. Mathar_, Aug 27 2009