login
Expansion of (1 - x^5) / ((1 - x) * (1 - x^4)) in powers of x.
3

%I #35 Feb 19 2024 01:50:06

%S 1,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,

%T 1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,

%U 2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2

%N Expansion of (1 - x^5) / ((1 - x) * (1 - x^4)) in powers of x.

%C The sequence A107453 has the same terms but different offset.

%C Convolution inverse of A164116.

%C Decimal expansion of 11111/99990. - _Elmo R. Oliveira_, Feb 18 2024

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).

%F Euler transform of length-5 sequence [ 1, 0, 0, 1, -1].

%F a(n) is multiplicative with a(2) = 1, a(2^e) = 2 if e>1, a(p^e) = 1 if p>2.

%F a(n) = (-1)^n * A164117(n).

%F a(4*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1.

%F a(-n) = a(n). a(n+4) = a(n) unless n=0 or n=-4.

%F G.f.: (1 + x + x^2 + x^3 + x^4) / ((1+x)*(1-x)*(1+x^2)).

%F a(n) = A138191(n+2), n>0. - _R. J. Mathar_, Aug 17 2009

%F Dirichlet g.f. (1+1/4^s)*zeta(s). - _R. J. Mathar_, Feb 24 2011

%F a(n) = (i^n + (-i)^n + (-1)^n + 5)/4 for n > 0 where i is the imaginary unit. - _Bruno Berselli_, Feb 25 2011

%e 1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + ...

%t CoefficientList[Series[(1+x+x^2+x^3+x^4)/(1-x^4), {x, 0, 100}], x] (* _G. C. Greubel_, Sep 22 2018 *)

%t LinearRecurrence[{0,0,0,1},{1,1,1,1,2},120] (* or *) PadRight[{1},120,{2,1,1,1}] (* _Harvey P. Dale_, Aug 24 2019 *)

%o (PARI) {a(n) = 2 - (n==0) - (n%4>0)}

%o (PARI) x='x+O('x^99); Vec((1-x^5)/((1-x)*(1-x^4))) \\ _Altug Alkan_, Sep 23 2018

%o (Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2+x^3+x^4)/(1-x^4))); // _G. C. Greubel_, Sep 22 2018

%Y Cf. A107453, A138191, A164116, A164117.

%K nonn,mult,easy

%O 0,5

%A _Michael Somos_, Aug 10 2009