%I #5 Oct 15 2013 08:43:32
%S 1,1,3,4,23,23,608,3703,59063,65975,65975,65975,3227648,83180983
%N Smallest positive m such that A050410(m) = 0 (mod n!).
%C Smallest positive m such that m-th truncated square pyramid number tsp(m)=m*(7*m-1)*(2*m-1)/6 is divisible by n!, n=0,1,.. .
%e a(3)=3 because tsp(3)=126 is divisible by 3!: 126/3!=21
%e a(5)=23 because tsp(23)=27600 is divisible by 5!: 27600/5!=230
%e a(6)=608 because tsp(608)=523875600 is divisible by 6!: 523875600/6!=727605.
%Y Cf. A050410 Truncated square pyramid numbers:a(n)=sum(k^2, k=n..2*n-1)=(1/6)n(7n-1)(2n-1).
%K more,nonn
%O 1,3
%A _Zak Seidov_, Aug 03 2009