Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 08 2020 17:44:31
%S 1,1,2,6,6,30,10,70,70,210,42,462,462,6006,858,4290,4290,72930,24310,
%T 461890,92378,1939938,176358,4056234,1352078,6760390,520030,1560090,
%U 222870,6463230,6463230,200360130
%N The radical of the swinging factorial A056040.
%C The radical of n$ is the product of the prime numbers dividing n$. It is the largest squarefree divisor of n$, and so also described as the squarefree kernel of n$.
%H G. C. Greubel, <a href="/A163641/b163641.txt">Table of n, a(n) for n = 0..1000</a>
%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html"> Swinging Factorial.</a>
%F a(n) = rad(n$).
%e 11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462.
%p a := proc(n) local p; mul(p,p=numtheory[factorset](n!/iquo(n,2)!^2)) end:
%t sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Jul 26 2013 *)
%Y Bisections give: A080397 (even part), A163640 (odd part).
%Y Cf. A056040.
%K nonn
%O 0,3
%A _Peter Luschny_, Aug 02 2009