%I
%S 1,7,322,51472,29671936,64588152832,545697103347712,
%T 18161310923858378752,2399054119350722118025216,
%U 1262710910458264839283982467072,2653270028014955753823799266500411392
%N Number of different fixed (possibly) disconnected polyominoes (of any area) bounded tightly by an n X n square.
%H G. C. Greubel, <a href="/A163437/b163437.txt">Table of n, a(n) for n = 1..55</a>
%F a(n) = 2^(n^2)  4*2^((n1)*n) + 4*2^((n1)^2) + 2*2^((n2)*n)  4*2^((n2)*(n1)) + 2^((n2)^2).
%e a(2)=7: 2 rotations of the strictly disconnected domino consisting of two squares connected at a vertex, 4 rotations of the L tromino, and the square tetromino.
%t Table[2^(n^2)  4*2^((n  1)*n) + 4*2^((n  1)^2) + 2*2^((n  2)*n) 
%t 4*2^((n  2)*(n  1)) + 2^((n  2)^2), {n, 1, 25}] (* _G. C. Greubel_, Dec 23 2016 *)
%Y Cf. A162677 (bound not necessarily tight), A163433 (fixed disconnected trominoes), A163434 (fixed disconnected tetrominoes), A163435 (fixed disconnected pentominoes), A163436 (fixed disconnected nominoes).
%K nonn
%O 1,2
%A _David Bevan_, Jul 28 2009
