login
Highly composite numbers that are the product of consecutive integers.
3

%I #5 Jun 26 2022 05:19:00

%S 2,6,12,24,60,120,240,360,720,840,1260,1680,2520,5040,15120,20160,

%T 50400,55440,166320,332640,665280,2162160,3603600,4324320,8648640,

%U 17297280,32432400,43243200

%N Highly composite numbers that are the product of consecutive integers.

%C Intersection of A002182 and A045619. Some of these numbers have two representations as the product of consecutive integers. The shortest representation is shown in the examples below. This sequence is probably complete.

%e 2=1*2, 6=2*3, 12=3*4, 24=2*3*4, 60=3*4*5, 120=4*5*6, 240=15*16, 360=3*4*5*6, 720=8*9*10, 840=4*5*6*7, 1260=35*36, 1680=5*6*7*8, 2520=3*4*5*6*7, 5040=7*8*9*10, 15120=5*6*7*8*9, 20160=3*4*5*6*7*8, 50400=224*225, 55440=7*8*9*10*11, 166320=54*55*56, 332640=6*7*8*9*10*11, 665280=7*8*9*10*11*12, 2162160=9*10*11*12*13*14, 3603600=10*11*12*13*14*15, 4324320=2079*2080, 8648640=7*8*9*10*11*12*13, 17297280=63*64*65*66, 32432400=9*10*11*12*13*14*15, 43243200=350*351*352.

%Y Cf. A002182, A045619, A064224.

%K nonn

%O 1,1

%A _T. D. Noe_, Jul 28 2009