Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 09 2017 10:40:17
%S 1,2,3,4,5,7,8,9,6,11,15,16,17,10,19,13,23,31,32,33,18,35,12,21,14,39,
%T 27,47,63,64,65,34,67,20,37,22,71,25,43,29,79,55,95,127,128,129,66,
%U 131,36,69,38,135,24,41,26,75,45,30,143,51,87,59,159,111,191,255,256
%N Permutation of natural numbers: sequence A126441 without zeros.
%C Values appear in the order determined by A004760(n+1)and A062383(n).
%C The graph of this sequence looks very elegant.
%H A. Karttunen, <a href="/A161924/b161924.txt">Table of n, a(n) for n = 1..1596 (first 18 rows)</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e The table begins:
%e 1.2.4..8.16.32.64.128.256.512.1024
%e ..3.5..9.17.33.65.129.257.513.1025
%e .......6.10.18.34..66.130.258..514
%e ....7.11.19.35.67.131.259.515.1027
%e ............12.20..36..68.132..260
%e .........13.21.37..69.133.261..517
%e ............14.22..38..70.134..262
%e ......15.23.39.71.135.263.519.1031
%e ...................24..40..72..136
%e ...............25..41..73.137..265
%e ...................26..42..74..138
%e ............27.43..75.139.267..523
%e .......................28..44...76
%e ...............29..45..77.141..269
%e ...................30..46..78..142
%e .........31.47.79.143.271.527.1039
%e ...........................48...80
%e .......................49..81..145
%e ...........................50...82
%e ...................51..83.147..275
%e This can be viewed as an irregular table, where row r (>= 1) has A000041(r) elements, that is, as 1; 2,3; 4,5,7; 8,9,6,11,15; 16,17,10,19,13,23,31; etc. A125106 illustrates how each number is mapped to a partition.
%t columns = 9; row[n_] := n - 2^Floor[Log2[n]]; col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n - 1)/2] + 1]; Clear[T]; T[_, _] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}]; Table[DeleteCases[Table[T[n - 1, k], {n, 1, 2^(k - 1)}], 0], {k, 1, columns}] // Flatten (* _Jean-François Alcover_, Sep 09 2017 *)
%Y Inverse: A166276. a(n) = A126441(A166274(n)). See A161919 for the version with each row sorted into ascending order.
%Y A161511(a(n)) = A036042(n).
%K nonn,tabf,look
%O 1,2
%A _Alford Arnold_, Jun 23 2009
%E Edited and extended by _Antti Karttunen_, Oct 12 2009