|
|
A161782
|
|
a(n) = sum of all numbers from and including (prime(n+1)-prime(n)) to and including (prime(n+2)-prime(n).)
|
|
1
|
|
|
6, 9, 20, 15, 20, 15, 20, 49, 21, 35, 40, 15, 20, 49, 63, 21, 35, 40, 15, 35, 40, 49, 90, 50, 15, 20, 15, 20, 165, 80, 49, 21, 77, 33, 35, 63, 40, 49, 63, 21, 77, 33, 20, 15, 104, 234, 70, 15, 20, 49, 21, 77, 91, 63, 63, 21, 35, 40, 15, 77, 255, 80, 15, 20, 165, 119, 121, 33
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{x=prime(n+1)-prime(n)..prime(n+2)-prime(n)} x = Sum_{x=A001223(n)..A031131(n)} x.
|
|
EXAMPLE
|
n = 1: prime(1) = 2, prime(2) = 3, prime(3) = 5. Sum of all numbers from prime(2)-prime(1) = 1 to prime(3)-prime(1) = 3 is 1+2+3, hence a(1) = 6.
n = 11: prime(11) = 31, prime(12) = 37, prime(13) = 41. Sum of all numbers from prime(12)-prime(11) = 6 to prime(13)-prime(11) = 10 is 6+7+8+9+10, hence a(11) = 40.
|
|
MATHEMATICA
|
Total[Range[#[[2]]-#[[1]], #[[3]]-#[[1]]]]&/@Partition[Prime[Range[70]], 3, 1] (* Harvey P. Dale, Oct 18 2021 *)
|
|
PROG
|
MAGMA) [ &+[(NthPrime(n+1)-NthPrime(n))..(NthPrime(n+2)-NthPrime(n))]: n in [1..68] ];
|
|
CROSSREFS
|
Cf. A001223 (differences between consecutive primes), A031131 (difference between n-th prime and (n+2)nd prime).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|