%I #5 Jul 19 2015 10:34:25
%S 1,14,104,545,2260,7889,24087,66013,165425,384320,836604,1720774,
%T 3366951,6301715,11333950,19664205,33018831,53808313,85306779,
%U 131846699,199019426,293868698,425060810,603012233,839953393,1149906518
%N Number of reduced words of length n in the Weyl group A_14.
%C Computed with MAGMA using commands similar to those used to compute A161409.
%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.
%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
%F G.f. for A_m is the polynomial Prod_{k=1..m}(1x^(k+1))/(1x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Nov 30 2009
