Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 05 2016 12:48:51
%S 0,0,1,1,1,1,1,1,2,1,1,3,2,2,5,3,3,6,5,6,8,6,7,11,10,9,14,13,13,19,16,
%T 18,25,22,25,32,29,31,42,41,41,53,51,54,69,64,69,88,83,89,109,105,112,
%U 136,134,141,170,166,177,215,207,219,262,260,276,320,320,341,397,397,417,485
%N Number of partitions of n into odd numbers where every part appears at least 3 times.
%H R. H. Hardin and Vaclav Kotesovec, <a href="/A161039/b161039.txt">Table of n, a(n) for n = 1..5000</a> (first 1000 terms from R. H. Hardin)
%F G.f.: Product_{j>=1} (1 + x^(6j-3)/(1-x^(2j-1))). - _Emeric Deutsch_, Jun 26 2009
%F a(n) ~ (6*c + Pi^2)^(1/4) * exp(sqrt((6*c + Pi^2)*n/3)) / (4*3^(1/4)*sqrt(Pi) * n^(3/4)), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - _Vaclav Kotesovec_, Jan 05 2016
%e a(15)=5 because we have 333, (2^6)(1^3), (2^5)(1^5), (2^4)(1^7), and (2^3)(1^9).
%p g := product(1+x^(3*(2*j-1))/(1-x^(2*j-1)), j = 1 .. 20): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 1 .. 72); # _Emeric Deutsch_, Jun 26 2009
%t nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(6*k-3) / (1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jan 02 2016 *)
%Y Cf. A100405.
%K nonn
%O 1,9
%A _R. H. Hardin_ Jun 02 2009
%E Minor edits by _Vaclav Kotesovec_, Jan 02 2016