The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160959 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 10. 1

%I

%S 1023,522753,10067343,133824768,499511463,5144412273,6880289823,

%T 34259140608,66051837423,255250357593,241218048687,1316969541888,

%U 904033571463,3515828099553,4915692307383,8770339995648,7582212353463,33752488923153,18339417490383,65344091543808

%N a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 10.

%H Amiram Eldar, <a href="/A160959/b160959.txt">Table of n, a(n) for n = 1..10000</a>

%H Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

%F a(n) = 1023*A160953(n). - _R. J. Mathar_, Mar 16 2016

%F From _Amiram Eldar_, Nov 08 2022: (Start)

%F Sum_{k=1..n} a(k) ~ c * n^9, where c = (341/3) * Product_{p prime} (1 + (p^8-1)/((p-1)*p^9)) = 220.6296374... .

%F Sum_{k>=1} 1/a(k) = (zeta(8)*zeta(9)/1023) * Product_{p prime} (1 - 2/p^9 + 1/p^17) = 0.0009795392562... . (End)

%t f[p_, e_] := p^(8*e - 8) * (p^9-1) / (p-1); a[1] = 1023; a[n_] := 1023 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* _Amiram Eldar_, Nov 08 2022 *)

%o (PARI) a(n) = {my(f = factor(n)); 1023 * prod(i = 1, #f~, (f[i,1]^9 - 1)*f[i,1]^(8*f[i,2] - 8)/(f[i,1] - 1));} \\ _Amiram Eldar_, Nov 08 2022

%Y Cf. A000010, A013666, A013667, A160953.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Nov 19 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:52 EST 2022. Contains 358617 sequences. (Running on oeis4.)