login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160309 Numerator of Hermite(n, 11/31). 1
1, 22, -1438, -116204, 5735020, 1019546792, -32683512776, -12476450886416, 165242061387152, 195473234180049760, 1442053974086139424, -3725270373510661319872, -112443853337363708739392, 83445871121227891089261184, 4645331284154383230526194560 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 31^n * Hermite(n, 11/31).
a(n+2) = 22*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(22*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 22/31, -1438/961, -116204/29791, 5735020/923521, ...
MATHEMATICA
Table[31^n*HermiteH[n, 11/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 11/31)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A009975 (denominators).
Sequence in context: A160259 A055475 A348813 * A367369 A033526 A078399
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 02:04 EDT 2024. Contains 375929 sequences. (Running on oeis4.)