|
|
A160309
|
|
Numerator of Hermite(n, 11/31).
|
|
1
|
|
|
1, 22, -1438, -116204, 5735020, 1019546792, -32683512776, -12476450886416, 165242061387152, 195473234180049760, 1442053974086139424, -3725270373510661319872, -112443853337363708739392, 83445871121227891089261184, 4645331284154383230526194560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 31^n * Hermite(n, 11/31).
a(n+2) = 22*a(n+1) - 1922*(n+1)*a(n)
E.g.f.: exp(22*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 22/31, -1438/961, -116204/29791, 5735020/923521, ...
|
|
MATHEMATICA
|
Table[31^n*HermiteH[n, 11/31], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
|
|
PROG
|
(PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - 961*x^2))) \\ G. C. Greubel, Oct 04 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(22/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|