login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = b(n+2)*b(n+1)/b(n), where b() = A160256().
2

%I #16 Nov 12 2020 03:32:19

%S 6,6,8,12,12,18,32,27,16,5,25,15,6,108,20,64,25,21,14,240,21,270,28,

%T 320,35,375,42,432,49,110,22,1680,33,1890,44,2240,55,2625,66,3024,77,

%U 3430,88,3840,99,4725,11,567,55,168,110,126,1320,378,2640,1134,3520,1701

%N a(n) = b(n+2)*b(n+1)/b(n), where b() = A160256().

%C By definition, each term of this sequence is a positive integer.

%H Alois P. Heinz, <a href="/A160257/b160257.txt">Table of n, a(n) for n = 1..10000</a>

%p bb:= proc(n) option remember; false end: b:= proc(n) option remember; local k, m; if n<3 then bb(n):= true; n else m:= denom(b(n-1) /b(n-2)); for k from m by m while bb(k) do od; bb(k):= true; k fi end: a:= n-> b(n+2) *b(n+1) /b(n): seq(a(n), n=1..100); # _Alois P. Heinz_, May 18 2009

%t bb[_] = False;

%t b[n_] := b[n] = Module[{k, m}, If[n<3, bb[n] = True; n, m = Denominator[ b[n-1]/b[n-2]]; For[k = m, bb[k], k += m]; bb[k] = True; k]];

%t a[n_] := b[n+2] b[n+1]/b[n];

%t Array[a, 100] (* _Jean-François Alcover_, Nov 12 2020, after _Alois P. Heinz_ *)

%Y Cf. A075076, A160256.

%K nonn,look

%O 1,1

%A _Leroy Quet_, May 06 2009

%E More terms from _Alois P. Heinz_, May 18 2009