|
|
A160151
|
|
Numerator of Hermite(n, 23/27).
|
|
1
|
|
|
1, 46, 658, -103868, -7656020, 253581256, 67477123576, 885618857008, -647933055794288, -40134778914678560, 6655977728057433376, 891340052066655340096, -65746928407518970839872, -18619244257704074488953728, 389682045181727146807062400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 27^n * Hermite(n, 23/27).
E.g.f.: exp(46*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(46/27)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 46/27, 658/729, -103868/19683, -7656020/531441, ...
|
|
MATHEMATICA
|
Table[27^n*HermiteH[n, 23/27], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
HermiteH[Range[0, 20], 23/27]//Numerator (* Harvey P. Dale, Jan 02 2019 *)
|
|
PROG
|
(PARI) x='x+O('x^30); Vec(serlaplace(exp(46*x - 729*x^2))) \\ G. C. Greubel, Sep 24 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(46/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|