Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Sep 08 2022 08:45:44
%S 1,5,8,6,6,7,9,0,8,4,1,4,2,6,7,5,4,1,3,3,8,7,2,4,7,7,1,6,4,6,1,9,7,7,
%T 0,9,4,6,8,6,1,6,0,3,9,0,2,1,0,0,3,1,9,8,1,2,0,9,3,0,3,2,2,5,3,4,4,2,
%U 1,0,9,0,7,5,2,2,7,4,6,6,4,7,4,0,2,5,8,9,2,9,1,9,6,0,6,6,9,9,4,0,7,1,4,6,7
%N Decimal expansion of (5907+1802*sqrt(2))/73^2.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A129289.
%C Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160041.
%H G. C. Greubel, <a href="/A160043/b160043.txt">Table of n, a(n) for n = 1..10000</a>
%F Equals (106+17*sqrt(2))/(106-17*sqrt(2)).
%F Equals (3+2*sqrt(2))*(9-2*sqrt(2))^2/(9+2*sqrt(2))^2.
%e (5907+1802*sqrt(2))/73^2 = 1.58667908414267541338...
%t RealDigits[(5907 + 1802*Sqrt[2])/73^2, 10, 50][[1]] (* _G. C. Greubel_, Apr 15 2018 *)
%o (PARI) (5907+1802*sqrt(2))/73^2 \\ _G. C. Greubel_, Apr 15 2018
%o (Magma) (5907+1802*Sqrt(2))/73^2; // _G. C. Greubel_, Apr 15 2018
%Y Cf. A129289, A160041, A002193 (decimal expansion of sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73).
%K cons,nonn
%O 1,2
%A _Klaus Brockhaus_, May 04 2009