The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158737 a(n) = 1296*n^2 - 36. 2

%I

%S 1260,5148,11628,20700,32364,46620,63468,82908,104940,129564,156780,

%T 186588,218988,253980,291564,331740,374508,419868,467820,518364,

%U 571500,627228,685548,746460,809964,876060,944748,1016028,1089900,1166364

%N a(n) = 1296*n^2 - 36.

%C The identity (72*n^2 - 1)^2 - (1296*n^2 - 36)*(2*n)^2 = 1 can be written as A158738(n)^2 - a(n)*A005843(n)^2 = 1.

%H Vincenzo Librandi, <a href="/A158737/b158737.txt">Table of n, a(n) for n = 1..10000</a>

%H Vincenzo Librandi, <a href="http://mathforum.org/kb/message.jspa?messageID=5785989&amp;tstart=0"> X^2-AY^2=1</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: 36*x*(-35 - 38*x + x^2)/(x-1)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%t LinearRecurrence[{3, -3, 1}, {1260, 5148, 11628}, 50] (* _Vincenzo Librandi_, Feb 20 2012 *)

%o (MAGMA) I:=[1260, 5148, 11628]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 20 2012

%o (PARI) for(n=1, 40, print1(1296*n^2 - 36", ")); \\ _Vincenzo Librandi_, Feb 20 2012

%Y Cf. A005843, A158738.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 25 2009

%E Comment rewritten and formula replaced by _R. J. Mathar_, Oct 22 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 20:26 EDT 2021. Contains 343137 sequences. (Running on oeis4.)