login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 784*n^2 + 28.
2

%I #24 Nov 01 2024 13:27:42

%S 28,812,3164,7084,12572,19628,28252,38444,50204,63532,78428,94892,

%T 112924,132524,153692,176428,200732,226604,254044,283052,313628,

%U 345772,379484,414764,451612,490028,530012,571564,614684,659372,705628,753452,802844,853804,906332

%N a(n) = 784*n^2 + 28.

%C The identity (56*n^2 + 1)^2 - (784*n^2 + 28)*(2*n)^2 = 1 can be written as A158660(n)^2 - a(n)*A005843(n)^2 = 1.

%H Vincenzo Librandi, <a href="/A158659/b158659.txt">Table of n, a(n) for n = 0..10000</a>

%H Vincenzo Librandi, <a href="https://web.archive.org/web/20090309225914/http://mathforum.org/kb/message.jspa?messageID=5785989&amp;tstart=0">X^2-AY^2=1</a>, Math Forum, 2007. [Wayback Machine link]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: -28*(1 + 26*x + 29*x^2)/(x-1)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F From _Amiram Eldar_, Mar 20 2023: (Start)

%F Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56.

%F Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56. (End)

%t LinearRecurrence[{3, -3, 1}, {28, 812, 3164}, 50] (* _Vincenzo Librandi_, Feb 17 2012 *)

%t 784 Range[0,40]^2+28 (* _Harvey P. Dale_, Nov 01 2024 *)

%o (Magma) I:=[28, 812, 3164]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 17 2012

%o (PARI) for(n=0, 40, print1(784*n^2 + 28", ")); \\ _Vincenzo Librandi_, Feb 17 2012

%Y Cf. A005843, A158660.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Mar 23 2009

%E Comment rephrased and redundant formula replaced by _R. J. Mathar_, Oct 19 2009