login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158500 Expansion of (1+sqrt(1+4x))*(1+2x)/(2*sqrt(1+4x)). 3

%I

%S 1,1,1,-4,15,-56,210,-792,3003,-11440,43758,-167960,646646,-2496144,

%T 9657700,-37442160,145422675,-565722720,2203961430,-8597496600,

%U 33578000610,-131282408400,513791607420,-2012616400080

%N Expansion of (1+sqrt(1+4x))*(1+2x)/(2*sqrt(1+4x)).

%C Hankel transform is A158501. Row sums of the Riordan array

%C ((1+2x)/sqrt(1+4x), xc(-x^2))=((1-x^2)/(1+x^2),x/(1-x)^2)^{-1}, where c(x) is the g.f. of A000108.

%C With the proviso that the negative signs be ignored,

%C a(n)=the sum of the consecutive pairwise products of the terms in row(n) of Pascal's triangle. For example, the seventh row for row(6) has the terms 1,6,15,20,15,6,1 giving a sum of 2*(1*6+6*15+15*20)=792=a(6). For row(10) the terms are 1,9,36,84,126,126,84,36,9,1 giving 2*(1*9+9*36+36*84+84*126)+126*126=43758=a(10). - _J. M. Bergot_, Jul 26 2012

%H Michael De Vlieger, <a href="/A158500/b158500.txt">Table of n, a(n) for n = 0..1665</a>

%H Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.

%F a(n)=C(1,n)+(-1)^n*C(2n-2,n-2).

%F n*(n-2)*a(n) +2*(n-1)*(2*n-3)*a(n-1)=0. - _R. J. Mathar_, Oct 25 2012

%F E.g.f.: 1 + 2*x - x*Q(0), where Q(k)= 1 + 2*x/(k+2 - (k+2)*(2*k+3)/(2*k+3 - (k+2)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Apr 28 2013

%t {1}~Join~Array[Binomial[1, #] + (-1)^#*Binomial[2 # - 2, # - 2] &,

%t 24] (* _Michael De Vlieger_, Jul 23 2020 *)

%Y Cf. A001791.

%K easy,sign

%O 0,4

%A _Paul Barry_, Mar 20 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 12:37 EST 2020. Contains 338639 sequences. (Running on oeis4.)