login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158001 Period 6: repeat [9, 10, 9, 4, 4, 1]. 1
9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1, 9, 10, 9, 4, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

a(n) = (1/90)*{-83*(n mod 6) + 82*[(n+1) mod 6] + 37*[(n+2) mod 6] + 112*[(n+3) mod 6] + 52*[(n+4) mod 6] + 22*[(n+5) mod 6]}, with n >= 0. - Paolo P. Lava, Mar 16 2009

From Wesley Ivan Hurt, Jun 18 2016: (Start)

G.f.: x*(9+10*x+9*x^2+4*x^3+4*x^4+x^5)/(1-x^6).

a(n) = a(n-6) for n > 6.

a(n) = (37 - 7*cos(n*Pi) - 17*cos(n*Pi/3) - 7*cos(2*n*Pi/3) + 11*sqrt(3)*sin(n*Pi/3) - sqrt(3)*sin(2*n*Pi/3))/6. (End)

MAPLE

A158001:=n->[9, 10, 9, 4, 4, 1][(n mod 6)+1]: seq(A158001(n), n=0..100); # Wesley Ivan Hurt, Jun 18 2016

MATHEMATICA

Flatten[Table[{9, 10, 9, 4, 4, 1}, {20}]] (* Wesley Ivan Hurt, Jun 18 2016 *)

PadRight[{}, 100, {9, 10, 9, 4, 4, 1}] (* Vincenzo Librandi, Jun 19 2016 *)

PROG

(MAGMA) &cat[[9, 10, 9, 4, 4, 1]^^20]; // Wesley Ivan Hurt, Jun 18 2016

CROSSREFS

Cf. A157763, A156755.

Sequence in context: A107434 A334681 A020508 * A157763 A010735 A063543

Adjacent sequences:  A157998 A157999 A158000 * A158002 A158003 A158004

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Mar 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)