The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157303 G.f. A(x) satisfies the condition that both G(x) = A(x/G(x)) and H(x) = A(x*H(x)) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157306 satisfies the same condition. 5

%I

%S 1,1,1,-4,-19,134,1074,-10158,-110067,1302086,17451662,-248857456,

%T -3948994550,66104803660,1210719480268,-23304935437410,

%U -484165206834051,10541640152174406,245149591293286518,-5958110923842801192

%N G.f. A(x) satisfies the condition that both G(x) = A(x/G(x)) and H(x) = A(x*H(x)) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157306 satisfies the same condition.

%F For n>=2, [x^(2n-1)] A(x)^(2n) = 0.

%F For n>=1, [x^(2n)] 1/A(x)^(2n-1) = 0.

%F G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = x/Series_Reversion(x*A(x)) = g.f. of A157302.

%F G.f. satisfies: A(x) = H(x/A(x)) where H(x) = A(x*H(x)) = Series_Reversion(x/A(x))/x = g.f. of A157304.

%e G.f.: A(x) = 1 + x + x^2 - 4*x^3 - 19*x^4 + 134*x^5 + 1074*x^6 --++...

%e ...

%e Let G(x) = A(x/G(x)) so that A(x) = G(x*A(x)) then

%e G(x) = 1 + x - 5*x^3 + 183*x^5 - 14352*x^7 + 1857199*x^9 -+...

%e has alternating zeros in the coefficients (cf. A157302):

%e [1,1,0,-5,0,183,0,-14352,0,1857199,0,-355082433,0,94134281460,0,...]

%e ...

%e Let H(x) = A(x*H(x)) so that A(x) = H(x/A(x)) then

%e H(x) = 1 + x + 2*x^2 - 26*x^4 + 1378*x^6 - 141202*x^8 +-...

%e has alternating zeros in the coefficients (cf. A157304):

%e [1,1,2,0,-26,0,1378,0,-141202,0,22716418,0,-5218302090,0,...].

%e ...

%e ZERO COEFFICIENTS IN POWERS OF G.F. A(x).

%e Even powers A(x)^(2n) yield zeros at odd positions 2n-1 for n>=2:

%e A^4: [1,4,10, 0, -105,228,5442,-24048,-535293,3588828,...];

%e A^6: [1,6,21,26,-144, 0, 8415,-17802,-849771,3596382,...];

%e A^8: [1,8,36,80,-110,-384,10608, 0, -1143105,2366472,...];

%e A^10:[1,10,55,170,65,-718,11580,26520,-1381080, 0, ...];

%e ...

%e Odd negative powers 1/A(x)^(2n-1) yield zeros at even positions 2n for n>=1:

%e A^-1: [1,-1, 0, 5,10,-168,-762,12297,87222,-1524622,...];

%e A^-3: [1,-3,3,14, 0, -549,-1173,41184,180558,-5088382,...];

%e A^-5: [1,-5,10,15,-45,-891, 0, 71760,152670,-9042640,...];

%e A^-7: [1,-7,21,0,-105,-1092,2604,99042, 0, -13000393,...]; ...

%o (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(x^2/serreverse(x*Ser(A)))[ #A], t, 0))); A[n+1]}

%Y Cf. A157302, A157304, A157305, A157306 (dual), A157307.

%K sign

%O 0,4

%A _Paul D. Hanna_, Feb 28 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 21:20 EST 2021. Contains 349426 sequences. (Running on oeis4.)