The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157280 a(n) arises in the normal ordering of n-th power of the operator (d/dx)(x(d/dx))^4 2

%I

%S 1,52,43833,149670844,1346634725665,25571928251231076,

%T 893591647147188285577,52327970757667659912764908,

%U 4796836032234830356783078467969

%N a(n) arises in the normal ordering of n-th power of the operator (d/dx)(x(d/dx))^4

%C this sequence generates the fifth terms of the following sequences:

%C a(2)=52=A000110(5), a(3)=43833=A020556(5), a(4)=149670844=A069223(5),

%C a(5)=1346634725665=A071379(5),a(6)=25571928251231076=A070227(5)

%F Sequence defined through the following hypergeometric-type generating function, in Maple notation:

%F exp(-1)*sum(hypergeom([k+1,k+1,k+1,k+1],[1,1,1,1],x)/k!,k=0..infinity)=sum(a(n)*x^n/(n!)^5,n=0..infinity),

%F which is itself an infinite sum of hypergeometric functions.

%t nMax = 8; kMax = 50; seq0 = {}; seq = {1}; While[seq != seq0, seq0 = seq; seq = (1/E Sum[HypergeometricPFQ[{k+1, k+1, k+1, k+1}, {1, 1, 1, 1}, x]/k!, {k, 0, kMax}] + O[x]^(nMax+1) // CoefficientList[#, x]&) Range[0, nMax]!^5 // Round; kMax += 10; Print[kMax]]; A157280 = seq (* _Jean-François Alcover_, Nov 07 2016 *)

%K nonn

%O 1,2

%A _Karol A. Penson_, Feb 26 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 04:43 EDT 2021. Contains 345157 sequences. (Running on oeis4.)