login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156713 Positive numbers y such that y^2 is of the form x^2+(x+16807)^2 with integer x. 1
12005, 12467, 12985, 14063, 15025, 16807, 19073, 20923, 24157, 26747, 31213, 40817, 48055, 53753, 63455, 71077, 84035, 99413, 111475, 131957, 148015, 175273, 232897, 275863, 309533, 366667, 411437, 487403, 577405, 647927, 767585, 861343 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

(-7203, a(1)), (-5740, a(2)), (-4704, a(3)), (-3087, a(4)), (-1903, a(5)), and (A118576(n), a(n+5)) are solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.

lim_{n -> infinity} a(n)/a(n-11) = 3+2*sqrt(2).

lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 1.

lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {0, 2, 4, 6, 7, 9}.

lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {3, 5, 8, 10}.

LINKS

Table of n, a(n) for n=1..32.

FORMULA

a(n) = 6*a(n-11)-a(n-22) for n > 22; a(1) = 12005, a(2) = 12467, a(3) = 12985, a(4) = 14063, a(5) = 15025, a(6) = 16807, a(7) = 19073, a(8) = 20923, a(9) = 24157, a(10) = 26747, a(11) = 31213, a(12) = 40817, a(13) = 48055, a(14) = 53753, a(15) = 63455, a(16) = 71077, a(17) = 84035, a(18) = 99413, a(19) = 111475, a(20) = 131957, a(21) = 148015, a(22) = 175273.

G.f.: (1-x)*(12005 +24472*x+37457*x^2+51520*x^3+66545*x^4+83352*x^5+102425*x^6+123348*x^7+147505*x^8+174252*x^9+205465*x^10+174252*x^11+147505*x^12+123348*x^13+102425*x^14+83352*x^15+66545*x^16+51520*x^17 +37457*x^18+24472*x^19+12005*x^20)/(1-6*x^11+x^22).

EXAMPLE

(-7203, a(1)) = (-7203, 12005) is a solution: (-7203)^2+(-7203+16807)^2 = 51883209+92236816 = 144120025 = 12005^2.

(A118576(1), a(6)) = (0, 16807) is a solution: 0^2+(0+16807)^2 = 258791569 = 16807^2.

(A118576(3), a(8)) = (3773, 20923) is a solution: 3773^2+(3773+16807)^2 = 14235529+423536400 = 437771929 = 20923^2.

PROG

(PARI) {forstep(n=-7220, 700000, [1, 3], if(issquare(2*n^2+33614*n+282475249, &k), print1(k, ", ")))}

CROSSREFS

Cf. A118576, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Sequence in context: A235074 A251163 A236607 * A183059 A287046 A235308

Adjacent sequences:  A156710 A156711 A156712 * A156714 A156715 A156716

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Feb 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 12:29 EDT 2021. Contains 346373 sequences. (Running on oeis4.)