login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156702 Numbers k such that k^2 - 1 == 0 (mod 24^2). 2

%I

%S 1,127,161,287,289,415,449,575,577,703,737,863,865,991,1025,1151,1153,

%T 1279,1313,1439,1441,1567,1601,1727,1729,1855,1889,2015,2017,2143,

%U 2177,2303,2305,2431,2465,2591,2593,2719,2753,2879,2881,3007,3041,3167,3169

%N Numbers k such that k^2 - 1 == 0 (mod 24^2).

%C Numbers k that are == +-1 (mod 9) and == +-1 (mod 32). - _Charles R Greathouse IV_, Dec 23 2011

%H Vincenzo Librandi, <a href="/A156702/b156702.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F G.f.: (-x^4 + 2*x^3 + 126*x^2 + 34*x + 127)/(x^5 - x^4 - x + 1). - _Alexander R. Povolotsky_, Feb 15 2009

%F a(n) = -36 + 27*(-1)^n + (4-4*i)*(-i)^n + (4+4*i)*i^n + 72*n. - _Harvey P. Dale_, Apr 25 2012

%t LinearRecurrence[{1,0,0,1,-1},{1,127,161,287,289},50] (* _Vincenzo Librandi_, Feb 08 2012 *)

%t With[{c=24^2},Select[Range[3200],Divisible[#^2-1,c]&]] (* _Harvey P. Dale_, Apr 25 2012 *)

%o (PARI) a(n)=n\4*288+[-1,1,127,161][n%4+1]

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Feb 13 2009

%E Corrected and edited by _Vinay Vaishampayan_, Jun 23 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 06:55 EDT 2021. Contains 345358 sequences. (Running on oeis4.)