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1 Introduction
I am not a professional mathematician, but a physicist, so my standard of rigour and
presentation may differ from what an academic may expect. I derived this when solving
Project Euler problem 741, and my post there contains an equivalent presentation. (This
document is based off that.)

A key property I will use is that of permutation invariance. Namely, by permuting
rows and columns of the considered matrices, the row and column sum stays invariant.

I found the argument deriving a recurrence for the unrestricted form of this problem
very helpful Tan, Z., Gao, S. & Heinrich, N. Enumeration of (0, 1)-matrices with constant
row and column sums. Appl. Math. Chin. Univ. 21, 479–486 (2006).

Note, by bisymmetric I mean a symmetric matrix that is also symmetric about re-
flections of its anti-diagonal. A binary matrix is a matrix whose entries can only be 0 or
1.

2 Derivation
We will follow the strategy of peeling a square onion, so we shall divide the cases into
even and odd dimension n. This is because fixing the first row also fixes the first and last
rows and columns, by symmetry. Let a2n by the number of (2n) × (2n) binary square
matrices with row and column sum fixed to 2. Let the number of bisymmetric matrices
of the same dimensions with the first row like 11000 · · · 0 (one on corner, one next to that
corner) be b2(n−1), and let the number of bisymmetric matrices whose first row is like
011000 · · · 0 be c2(n−1). Note we have the −1 because the outer square ring is fixed, so
the free part has dimension (2n− 2)× (2n− 2).

First consider if the first row has 1s on both corners. By symmetry, all corners will
have 1, whence we can delete the outer square onion. This contribution is a2n−2. Now
consider the case when the first row is symmetric under 180-degree rotation. Then by
symmetry, the last row will be identical. Furthermore, the first and last column will be
identical. Thus we have, in addition to the outer square onion, 2 extra rows and columns
that are filled and can be deleted. The number of such first rows with the 180-deg
symmetry, which do not have corner 1s is (n−1). Thus, this contribution is (n−1)a2n−4.

Now consider if the first row has a corner 1 and a non-corner 1. By permutation
invariance, we can map this to the case of 11000 · · · 0, namely b2(n−1). The corner 1
has two options, whereas the non-corner has (2n− 2) options. Thus, this contribution is
4(n−1)b2(n−1). Finally, the case when the first row has no corner 1s and is not 180-degree
symmetric can be made to be equivalent to a first row like 011000 · · · 0 by permutation

1

http://dx.doi.org/10.1007/s11766-006-0013-4
http://dx.doi.org/10.1007/s11766-006-0013-4


invariance. The number of ways to permute the 1s is (2n−2)(2n−4)
2

, avoiding the n− i case,
thus the contribution is (2n−2)(2n−4)

2
c2(n−1). Thus, we have

a2n = a2(n−1) + (n− 1)a2(n−2) + 4(n− 1)b2(n−1) + 2(n− 1)(n− 2)c2(n−1).

Now we seek recurrences for b and c. First consider b2n. The outer most square onion
(of dimension (2n + 2) × (2n + 2) because of our aforementioned convention) will have
corners that look like

1 1 0 · · · 0 0 0
1 0
0 0
... ...
0 0
0 1
0 0 0 · · · 0 1 1

Since we seek to delete the outer-most square onion, we have deal with the 1s that
look at the corner of the next inner square onion ring. Actually we can just fuse them
into the next inner square onion and then delete the outer square onion. The inner square
onion will now have two corner 1s. If the other corners are also occupied, then we can
just delete the inner square onion, leaving a free (2n−2)× (2n−2) matrix. If the corners
that we originally intended to fuse the 1s are occupied, we can use the other necessarily
free corners. These two cases yield a factor 2. This contribution is then 2a2(n−1).

Now consider when the inner square onion does not have occupied corners. There are
(2n − 2) options for the 1 to reside. By permutation invariance, we can move it to the
place next to the left corner, and then fuse the 1s facing the inner square onion corner.
This situation is exactly b2(n−1)! Thus,

b2n = 2a2(n−1) + 2(n− 1)b2(n−1).

Finally for the even case, consider the recurrence for c2n. First consider the case

0 1 1 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
0 0 0 0 0 0
... ... ... . . . ... ... ...
0 0 0 0 0 0
0 0 0 0 · · · 0 0 1 1
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 1 1 0

Notice the first row has form 01100 · · · 0, and the first inner square ring is like
01000 · · · 0 and the second inner square ring is all 0s. This leaves the inner most (2n −
4) × (2n − 4) matrix free, so this contribution is a2(n−2). But note that by rotating the
top row of the first inner square onion by 180 degrees yields the same effect (namely
0 · · · 0010), so we have a factor 2.
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0 1 1 0 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
1 0 X X · · · X X 0 0
0 0 X X 0 0
... ... ... . . . ... ... ...
0 0 X X 0 0
0 0 X X · · · X X 0 1
0 0 0 0 · · · 0 0 1 1
0 0 0 0 · · · 0 1 1 0

→ (fuse)

D D D D · · · D D D D
D 1 1 0 · · · 0 0 0 D
D 1 X X · · · X X 0 D
D 0 X X 0 D
... ... ... . . . ... ... ...
D 0 X X 0 D
D 0 X X · · · X X 1 D
D 0 0 0 · · · 0 1 1 D
D D D D · · · D D D D

0 1 1 0 · · · 0 0 0 0
1 X 0 X · · · X 0 X 0
1 0 1 0 · · · 0 0 0 0
0 X 0 0 X 0
... ... ... . . . ... ... ...
0 X 0 0 X 0
0 0 0 0 · · · 0 1 0 1
0 X 0 X · · · X 0 X 1
0 0 0 0 · · · 0 1 1 0

→ (fuse)

1 1 D 0 · · · 0 D 0 0
1 X D X · · · X D X 0
D D D D · · · D D D D
0 X D D X 0
... ... ... . . . ... ... ...
0 X D D X 0
D D D D · · · D D D D
0 X D X · · · X D X 1
0 0 D 0 · · · 0 D 1 1

Now consider if the first or second inner square onion ring has a corner 1. There are 4
possibilities. Considering the case above, we see that we could fuse the remaining outer
1s onto the entry adjacent to the corner of the first inner ring and delete the outer ring,
thereby reducing it to the b2(n−1) case. A similar procedure exists for the other cases
due to permutation invariance. Explicitly, if the inner ring has an upper-left corner 1,
we could delete the row and columns of the second inner ring, and then add a 1 to the
upper-left corner of the outer ring to compensate for the lost 1s, yielding and equivalent
scenario. In the above, X = 0, 1 and D means deleted. However we have doubled-
counted the case when inner rings both have corner 1s. In this case, all three rings can be
deleted, leaving the free inner matrix with a2n−4 possibilities. The double-counting case
also has 4 possibilities. Combining with the above contribution yields a net contribution
of 2a2n−4 + 4b2n−2 − 4a2n−4 = 4b2(n−1) − 2a2(n−2).

Finally, if the inner two rings do not satisfy the above two cases, there are two final
cases. Firstly, if the 1s in the top row of the two inner rings line up, and if they don’t.
If they line up there are (2n − 4) options for the first inner ring. The second inner ring
actually has two choices, i and n− i where i is the position of the 1 in the first inner ring.
This is because due to the symmetry, the bottom row of the second inner ring will have
a 1 at n − j where j is the position of the 1 in the top row. Thus there are 2(2n − 4)
possibilities here. By symmetry, this means that not only can we delete the 3 rings,
but we can also delete one more row and column due to the doubled-up ones in the two
inner rings. We are then left with a (2n − 6) × (2n − 6) free matrix. This contribution
is therefore 2(2n − 4)a2(n−3). If the other 1s in the two inner rings are not doubled up,
then there are (2n− 4)(2n− 6) options. Then we can delete the 3 outer rings, and fuse
the 1s in the first and second inner ring into a new row, yielding a (2k − 2) × (2k − 2)
matrix whose outer ring has two non-corner ones. The inner matrix has precisely c2n−4

3



possibilities. Thus, we have

c2n = 4b2(n−1) − 2a2(n−2) + 4(n− 2)a2(n−3) + 4(n− 2)(n− 3)c2(n−2).

Finally let’s consider the odd case. Note that by symmetry, the position of one 1 in
the middle row fixes the position of all 1s in the middle row and column. If the dimension
is 2n+1, the number of options for the middle row and column is then n. By permutation
invariance, we can bring the middle 1s to the outer most ring. We can then delete the
middle row and column, and fuse the middle 1s into one of the corners. If one of the
corners is already occupied (2 possibilities) we choose the other corner. Then the outer
ring contains only 1s, so we can delete it, leaving the inner (2n−2)×(2n−2) matrix free,
so a2n−2 possibilities. If the corner wasn’t originally occupied, we can fuse the middle
ones into the left corner; the other 1 has (2n− 2) possible options, and this case reduces
to b2n−2, But since 2a2(n−1) + 2(n− 1)b2(n−1) = b2n, we have,

a2n+1 = n · b2n.
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