%I #3 Mar 30 2012 17:39:52
%S 9,2,5,8,5,7,2,7,4,7,1,2,8,9,3,1,2,7,9,9,8,8,8,2,1,3,8,2,0,7,1,5,8,4,
%T 1,5,2,7,8,4,5,0,2,1,8,1,9,1,9,6,6,0,2,1,5,3,2,7,6,5,6,6,2,0,2,9,5,6,
%U 7,4,4,6,8,1,0,7,1,2,4,7,5,7,0,3,9,6,4,4,8,6,6,8,9
%N Decimal expansion of the product_{q=3-almost-primes} (q^2-1)/(q^2+1).
%C The 3-almost-prime analog of A112407. Its logarithm has been computed from -2*sum_{l=1..infinity} P_3(2*(2l-1))/(2l-1) where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.
%H R. J. Mathar, <a href="http://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a>, arXiv:0803.0900 [math.NT].
%H R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products over all positive integers</a>, arXiv:0903.2514 [math.NT], third line Table 1. [From _R. J. Mathar_, Mar 28 2009]
%F product_{n=1..infinity} (A014612(n)^2-1)/(A014612(n)^2+1).
%e 0.92585727... = 63/65*143/145*323/325*399/401*364/365*...
%Y Cf. A112407.
%K cons,nonn
%O 0,1
%A _R. J. Mathar_, Jan 27 2009