

A155728


INVERTi transform of A054765: (1, 3, 19, 160, 1744, ...).


1



1, 2, 14, 121, 1383, 19108, 309708, 5751027, 120357325, 2803145494, 71926499002, 2016492639229, 61338391284387, 2012321446421976, 70833707268623448, 2663117961930477847, 106515148705020928105, 4516063573152118802282, 202328834841437929100838
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This sequence convolved with A054765 prefaced with a 1: (1, 1, 3, 19, 160, ...) = (1, 3, 19, 160, ...), equivalent to row sums of triangle A155729 = A054765.


LINKS



FORMULA

INVERTi transform of A054765 starting with offset 1: (1, 3, 19, 160, 1774, 23184, ...).


EXAMPLE

We write (1, 3, 19, 160, ...) in reverse: (..., 19, 3, 1), top row.
Bottom row = (1, 2, ...), so that the format for a(3) = 14 becomes: ...3, 1 = A054765: (1, 3, 19, 160, ...). ..., 1, 2 for current format, take dot product = (3*1 + 1*2) = 5, then subtract from next term in A054765, getting (19  5) = 14. So a(3) = 14.
Continuing with analogous operations, we get (1, 2, 14, 121, 1383, ...).


CROSSREFS



KEYWORD

eigen,nonn


AUTHOR



EXTENSIONS



STATUS

approved



