login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155521
Smallest fixed point summed over all non-derangement permutations of {1,2,...,n}.
10
0, 1, 1, 7, 31, 191, 1331, 10655, 95887, 958879, 10547659, 126571919, 1645434935, 23036089103, 345541336531, 5528661384511, 93987243536671, 1691770383660095, 32143637289541787, 642872745790835759, 13500327661607550919
OFFSET
0,4
COMMENTS
a(n) is also the number of permutations of {1,2,...,n,n+1} having at least 2 fixed points. Example: a(3)=7 because we have 1234, 1243, 1324, 1432, 2134, 4231, and 3214.
LINKS
Emeric Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
FORMULA
a(n) = (n+1)*a(n-1) +n*(-1)^(n+1); a(0)=0.
E.g.f.: (1-(1+x^2)*exp(-x))/(1-x)^2.
a(n) = (n+1)!+(-1)^n-2(n+1)*d(n),
a(n) = (n+1)!-(n+1)*d(n)-d(n+1), where d(n)=A000166(n) are the derangement numbers.
a(n) ~ n!*n*(1-2/e). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k=0..n-1} (k+1) * A047920(n-1,k). - Alois P. Heinz, Sep 01 2021
D-finite with recurrence a(n) +(-n+1)*a(n-1) +(-2*n+1)*a(n-2) +(-n+1)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3)=7 because the non-derangements of {1,2,3} are 123, 132, 213, 321 with smallest fixed points 1, 1, 3, 2.
MAPLE
a[0] := 0: for n to 25 do a[n] := (n+1)*a[n-1]+n*(-1)^(n+1) end do: seq(a[n], n = 0 .. 21);
MATHEMATICA
CoefficientList[Series[(1-(1+x^2)*E^(-x))/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A139060 A324621 A223144 * A201116 A329944 A379424
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 21 2009
STATUS
approved