

A154708


Numbers a such that b and c exist with b <= a < c and a*(a+1) + b^2 = c^2.


0



3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96, 99, 100, 103, 104, 107, 108, 111, 112, 115, 116, 119, 120, 123, 124, 127, 128, 131, 132, 135, 136, 139, 140
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers a such that a*(a+1) = c2  b2 with b <= a < c let a(1)=3 then a(2*n) = a(2*n1) + 1 and a(2*n+1) = a(2*n) + 3. [Pierre CAMI, Jan 15 2009]


LINKS

Table of n, a(n) for n=1..70.
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

a(1)=4; thereafter a(2*n) = a(2*n1) + 3, a(2*n+1) = a(2*n) + 1.
a(n) = 4*n  a(n1)  1 (with a(1)=3). [Vincenzo Librandi, Nov 26 2010]
From Colin Barker, Mar 06 2013: (Start)
a(n) = (1  (1)^n + 4*n)/2.
a(n) = a(n1) + a(n2)  a(n3).
G.f.: x*(x+3) / ((x1)^2*(x+1)). (End)


EXAMPLE

4*5 + 4*4 = 6*6; 7*8 + 5*5 = 9*9; 8*9 + 7*7 = 11*11;
3*4 = 4*4  2*2; a(1)=3; 4*5 = 6*6  4*4; a(2) = 4; 7*6 = 9*9  5*5; a(3)=7. [Pierre CAMI, Jan 15 2009]


MATHEMATICA

LinearRecurrence[{1, 1, 1}, {3, 4, 7}, 70] (* Harvey P. Dale, Jan 07 2016 *)


CROSSREFS

Essentially the same as A014601. [R. J. Mathar, Nov 01 2009]
Sequence in context: A285503 A327221 A014601 * A227148 A026444 A003171
Adjacent sequences: A154705 A154706 A154707 * A154709 A154710 A154711


KEYWORD

nonn,easy


AUTHOR

Pierre CAMI, Jan 14 2009, Jan 15 2009


EXTENSIONS

More terms from Vincenzo Librandi, Nov 26 2010


STATUS

approved



