Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 09 2024 12:24:24
%S 1,1,6,23,230,1682,23548,259723,4675014,69413294,1527092468,
%T 28588019814,743288515164,16818059163492,504541774904760,
%U 13397724585164019,455522635895576646,13892023109165902550,527896878148304296900
%N Maximal coefficient of MacMahon polynomial (cf. A060187) p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; that is, a(n) = Max(coefficients(p(x,n))).
%C Since the center is the maximum in the Pascal, Eulerian and MacMahon triangles, a(n)=MacMahon[n,Floor[n/2]]
%H Vaclav Kotesovec, <a href="/A154420/b154420.txt">Table of n, a(n) for n = 0..300</a>
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/EulerianPolynomialsGeneralized">Generalized Eulerian polynomials</a>.
%F a(n) ~ sqrt(3) * 2^(n+1) * n^n / exp(n). - _Vaclav Kotesovec_, Oct 28 2021
%p gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
%p series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
%p collect(simplify(%), x) end:
%p seq(coeff(gf(n,1),x,iquo(n,2)),n=0..18); # Middle Eulerian numbers, A006551.
%p seq(coeff(gf(n,2),x,iquo(n,2)),n=0..18); # Middle midpoint Eulerian numbers.
%p # _Peter Luschny_, May 02 2013
%t p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
%t Table[Max[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 30}]
%Y Cf. A060187, A006551.
%K nonn
%O 0,3
%A _Roger L. Bagula_, Jan 09 2009
%E Edited by _N. J. A. Sloane_, Jan 15 2009