The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153300 Coefficient of x^(4n)/(4n)! in the Maclaurin expansion of cm4(x), which is a generalization of the Dixon elliptic function cm(x,0) defined by A104134. 4

%I

%S 1,6,2268,7434504,95227613712,3354162536029536,264444869673131894208,

%T 40740588107524550752746624,11136881432872615930509713801472,

%U 5026062205760019668688216299061782016

%N Coefficient of x^(4n)/(4n)! in the Maclaurin expansion of cm4(x), which is a generalization of the Dixon elliptic function cm(x,0) defined by A104134.

%H Vaclav Kotesovec, <a href="/A153300/b153300.txt">Table of n, a(n) for n = 0..117</a>

%F Define sm4(x)^4 = cm4(x)^4 - 1, where sm4(x) is the g.f. of A153301, then:

%F d/dx cm4(x) = sm4(x)^3 ;

%F d/dx sm4(x) = cm4(x)^3 .

%F a(n) ~ 2^(14*n + 11/4) * Gamma(3/4)^(8*n+1) * n^(4*n) / (exp(4*n) * Pi^(6*n + 3/4)). - _Vaclav Kotesovec_, Oct 06 2019

%e G.f.: cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...

%e sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...

%e These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where:

%e cm4(x)^4 = 1 + 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16 +...

%e RELATED EXPANSIONS:

%e cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +...

%e sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +...

%e cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +...

%e sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +...

%e DERIVATIVES:

%e d/dx cm4(x) = sm4(x)^3 ;

%e d^2/dx^2 cm4(x) = 3*cm4(x)^3*sm4(x)^2 ;

%e d^3/dx^3 cm4(x) = 6*cm4(x)^6*sm4(x) + 9*cm4(x)^2*sm4(x)^5 ;

%e d^4/dx^4 cm4(x) = 6*cm4(x)^9 + 81*cm4(x)^5*sm4(x)^4 + 18*cm4(x)*sm4(x)^8 ;...

%t With[{n = 9}, CoefficientList[Series[JacobiDN[Sqrt[2] x^(1/4), 1/2]/Sqrt[JacobiCN[Sqrt[2] x^(1/4), 1/2]], {x, 0, n}], x] Table[(4 k)!, {k, 0, n}]] (* _Jan Mangaldan_, Jan 04 2017 *)

%o (PARI) {a(n)=local(A);if(n<0,0,A=x*O(x);for(i=0,n,A=1+intformal(intformal(A^3)^3));n=4*n;n!*polcoeff(A,n))}

%Y Cf. A104134; A153301, A153302 (cm4(x)^2 + sm4(x)^2).

%Y Cf. A153303 (cm4(x)^4). [From _Paul D. Hanna_, Jan 03 2009]

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 02 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)