login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) + a(n+1) + a(n+2) = 3^n.
2

%I #22 Jul 03 2023 10:36:59

%S 0,0,3,6,18,57,168,504,1515,4542,13626,40881,122640,367920,1103763,

%T 3311286,9933858,29801577,89404728,268214184,804642555,2413927662,

%U 7241782986,21725348961,65176046880,195528140640,586584421923,1759753265766,5279259797298

%N a(n) + a(n+1) + a(n+2) = 3^n.

%H Vincenzo Librandi, <a href="/A152733/b152733.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, 2, 3).

%F From _R. J. Mathar_, Dec 12 2008: (Start)

%F a(n) = 3*A077834(n-3).

%F G.f.: 3*x^3/((1-3*x)*(1+x+x^2)). (End)

%F a(n) = (1/13)*(3^n + 12*cos((2*n*Pi)/3) + 2*sqrt(3)*sin((2*n*Pi)/3)), n=1,2,... - _Zak Seidov_, Dec 12 2008

%e 0 + 0 + 3 = 3^1; 0 + 3 + 6 = 3^2; 3 + 6 + 18 = 3^3; ...

%t k0=k1=0;lst={k0,k1};Do[kt=k1;k1=3^n-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst

%t Rest[CoefficientList[Series[3x^3/((1-3x)(1+x+x^2)),{x,0,30}],x]] (* _Harvey P. Dale_, Aug 31 2014 *)

%o (Magma) [n le 2 select 0 else 3^(n-2) -Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Aug 31 2014

%o (PARI) x='x+O('x^30); concat([0,0], Vec(3*x^3/((1-3*x)*(1+x+x^2)))) \\ _G. C. Greubel_, Sep 01 2018

%Y Cf. A152728, A152729, A152730, A152731, A152732, A152725, A152726, A000212.

%K nonn

%O 1,3

%A _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008