login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152504 1/10 of the number of permutations of 4 indistinguishable copies of 1..n with exactly 2 local maxima. 6
0, 3, 140, 5175, 183000, 6416875, 224662500, 7863609375, 275228750000, 9633019921875, 337155773437500, 11800452490234375, 413015839453125000, 14455554393310546875, 505944403833007812500, 17708054134515380859375, 619781894709960937500000, 21692366314858856201171875 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (45,-375,875).

FORMULA

a(n) = (11*35^(n-1) - 11*5^(n-1) - 12*(n-1)*5^(n-1))/90. - Andrew Howroyd, May 10 2020

From Colin Barker, Jul 16 2020: (Start)

G.f.: x^2*(3 + 5*x) / ((1 - 5*x)^2*(1 - 35*x)).

a(n) = 45*a(n-1) - 375*a(n-2) + 875*a(n-3) for n>3.

(End)

PROG

(PARI) a(n) = {(11*35^(n-1) - 11*5^(n-1) - 12*(n-1)*5^(n-1))/90} \\ Andrew Howroyd, May 10 2020

(PARI) concat(0, Vec(x^2*(3 + 5*x) / ((1 - 5*x)^2*(1 - 35*x)) + O(x^20))) \\ Colin Barker, Jul 16 2020

CROSSREFS

Cf. A152494, A334773.

Sequence in context: A070322 A053527 A195632 * A191958 A224707 A288922

Adjacent sequences:  A152501 A152502 A152503 * A152505 A152506 A152507

KEYWORD

nonn,easy

AUTHOR

R. H. Hardin, Dec 06 2008

EXTENSIONS

Terms a(9) and beyond from Andrew Howroyd, May 10 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 03:33 EST 2021. Contains 349530 sequences. (Running on oeis4.)