The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152303 Marsaglia-Zaman type recursive sequence as a vector Markov: M = {{0, 1}, {1, 1}}; M1 = {{0, 0}, {1/10, 0}}; v(n)=M.v(n-1)+Floor[M1.v(n-1),10] a(n)=Mod[v(n)[[1]],10]. 0

%I

%S 1,1,2,3,5,8,3,1,5,8,6,9,4,8,8,9,9,8,7,8,9,8,8,1,9,1,4,4,0,7,0,6,2,6,

%T 0,8,4,4,1,9,9,8,9,3,0,6,8,0,6,4,6,5,2,4,9,3,3,0,0,9,6,6,5,9,6,5,4,3,

%U 7,1,6,3,3,0,0,2,4,4,4,3,7,7,4,7,0,4,5,9,0,0,2,1,0,7,0,5,6,9,5,1,4

%N Marsaglia-Zaman type recursive sequence as a vector Markov: M = {{0, 1}, {1, 1}}; M1 = {{0, 0}, {1/10, 0}}; v(n)=M.v(n-1)+Floor[M1.v(n-1),10] a(n)=Mod[v(n)[[1]],10].

%D Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207

%F M = {{0, 1}, {1, 1}}; M1 = {{0, 0}, {1/10, 0}};

%F v(n)=M.v(n-1)+Floor[M1.v(n-1),10];

%F a(n)=Mod[v(n)[[1]],10].

%t Clear[M, M1, v, n];

%t M = {{0, 1}, {1, 1}}; M1 = {{0, 0}, {1/10, 0}};

%t v[0] = {1, 1};

%t v[n_] := v[n] = M.v[n - 1] + Floor[M1.v[n - 1]];

%t Table[v[n][[1]], {n, 0, 100}]

%t Table[Mod[v[n][[1]], 10], {n, 0, 100}]

%K nonn

%O 0,3

%A _Roger L. Bagula_, Dec 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 23:54 EST 2022. Contains 350601 sequences. (Running on oeis4.)