login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152250 Eigentriangle, row sums = A001850, the Delannoy numbers. 2

%I

%S 1,2,1,8,2,3,36,8,6,13,172,36,24,26,63,852,172,108,104,126,321,4324,

%T 852,516,468,504,642,1683,22332,4324,2556,2236,2268,2568,3366,8989,

%U 116876,22332,12972,11076,10836,11556,13464,17978,48639

%N Eigentriangle, row sums = A001850, the Delannoy numbers.

%C Row sums = A001850, the Delannoy numbers: (1, 3, 13, 63, 321,...).

%C Sum of n-th row terms = rightmost term of next row.

%H M. Dziemianczuk, <a href="http://www.emis.de/journals/INTEGERS/papers/n54/n54.Abstract.html">Generalizing Delannoy numbers via counting weighted lattice paths</a>, INTEGERS, 13 (2013), #A54.

%H M. Dziemianczuk, <a href="http://arxiv.org/abs/1410.5747">On Directed Lattice Paths With Additional Vertical Steps</a>, arXiv preprint arXiv:1410.5747 [math.CO], 2014.

%H M. Dziemianczuk, <a href="https://doi.org/10.1016/j.disc.2015.11.001">On Directed Lattice Paths With Additional Vertical Steps</a>, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.

%F Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A109980 in every column: (1, 2, 8, 36, 172,...); Q = a matrix with A001850 prefaced with a "1" as the main diagonal: (1, 1, 3, 13, 63, 321,...) and the rest zeros.

%e First few rows of the triangle =

%e 1;

%e 2, 1;

%e 8, 2, 3;

%e 36, 8, 6, 13;

%e 172, 36, 24, 26, 63;

%e 852, 172, 108, 104, 126, 321;

%e 4324, 852, 516, 468, 504, 642, 1683;

%e 22332, 4324, 2556, 2236, 2268, 2568, 3366, 8989;

%e 116876, 22332, 12972, 11076, 10836, 11556, 13464, 17978, 48639;

%e ...

%e Row 3 = (36, 8, 6, 13) = termwise products of (36, 8, 2, 1) and (1, 1, 3, 13).

%t nmax = 8;

%t T[0, 0] = 1;

%t T[n_, 0] := SeriesCoefficient[1/(x + Sqrt[1 - 6x + x^2]), {x, 0, n}];

%t T[n_, n_] := LegendreP[n - 1, 3];

%t row[n_] := row[n] = Table[T[m, 0], {m, n, 0, -1}]*Table[T[m, m], {m, 0, n} ];

%t T[n_, k_] /; 0 < k < n := row[n][[k + 1]];

%t Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-Fran├žois Alcover_, Aug 07 2018 *)

%Y Cf. A001850, A109980.

%K eigen,nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Nov 30 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 21:55 EDT 2021. Contains 345080 sequences. (Running on oeis4.)