login
Triangle of 4 - restricted Eulerian numbers as polynomials used in exponential data smoothing: m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6; t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n
0

%I #7 Jan 09 2024 12:23:09

%S 1,1,6,1,19,36,1,46,241,216,1,101,1091,2551,1296,1,212,4182,18932,

%T 24337,7776,1,435,14666,113366,273141,217015,46656,1,882,48783,600124,

%U 2385999,3487218,1845697,279936,1,1777,156933,2937109,17931235,42397299

%N Triangle of 4 - restricted Eulerian numbers as polynomials used in exponential data smoothing: m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6; t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n

%C Row sums are: {1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400,...}. The sequences A008292, A144696,A144697,A144698,A144699 and this one, form a matrix of polynomials that are used in data smoothing calculations.

%D Douglas C. Montgomery, Lynwood A, Johnson, Forecasting and Time Series Analysis,McGraw-Hill, New York,1976,page 64.

%F m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6;

%F t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n

%e {1},

%e {1, 6},

%e {1, 19, 36},

%e {1, 46, 241, 216},

%e {1, 101, 1091, 2551, 1296},

%e {1, 212, 4182, 18932, 24337, 7776},

%e {1, 435, 14666, 113366, 273141, 217015, 46656},

%e {1, 882, 48783, 600124, 2385999, 3487218, 1845697, 279936},

%e {1, 1777, 156933, 2937109, 17931235, 42397299, 40817623, 15159367, 1679616},

%e {1, 3568, 493900, 13631632, 121964374, 433696144, 667299052, 447815920, 121232113,10077696}

%t M[p_, k_, x_] = ((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;

%t Table[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}], {n, 1, 10}];

%t Table[Flatten[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}]], {n, 1, 10}]

%Y A008292, A144696, A144697, A144698, A144699

%K nonn,tabl

%O 1,3

%A _Roger L. Bagula_, Nov 30 2008