|
|
A152121
|
|
a(0) = 4; for n>0, a(n) = a(n-1)^2 - 2^(1+2^(n-1))
|
|
1
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
A subset of A056236, where a(n) = (2+sqrt(2))^n+(2-sqrt(2))^n, when the exponent n is a nonnegative integer power of 2. I.E.: a(0) = (2+sqrt(2))^(2^0)+(2-sqrt(2))^(2^0), a(1) = (2+sqrt(2))^(2^1)+(2-sqrt(2))^(2^1); a(2) = (2+sqrt(2))^(2^2)+(2-sqrt(2))^(2^2); etc.
For all n the value 2^(n+1) can be factored from each a(n), which except for a different initial term (a(0) = 2 instead of a(0) = 1) matches the sequence A001601 for n>0.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1)^2 - 2^(1+2^(n-1))
|
|
EXAMPLE
|
a(0) = 4; a(1) = 4^2 - 2^2 = 12; a(2) = 12^2 - 2^3 = 136; a(3) = 136^2 - 2^5 = 18464; a(4) = 18464^2 - 2^9 = 340918784.
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Dennis Martin (dennis.martin(AT)dptechnology.com), Nov 24 2008
|
|
STATUS
|
approved
|
|
|
|