login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151573 a(0)=1, a(1)=1; a(2^i+j)=a(j)+2*a(j+1) for 0 <= j < 2^i. 16

%I

%S 1,1,3,7,3,7,17,13,3,7,17,13,17,41,43,19,3,7,17,13,17,41,43,19,17,41,

%T 43,47,99,127,81,25,3,7,17,13,17,41,43,19,17,41,43,47,99,127,81,25,17,

%U 41,43,47,99,127,81,53,99,127,137,245,353,289,131,31,3,7,17,13,17,41,43,19,17

%N a(0)=1, a(1)=1; a(2^i+j)=a(j)+2*a(j+1) for 0 <= j < 2^i.

%C Equals A151572 + A151703.

%H Robert Israel, <a href="/A151573/b151573.txt">Table of n, a(n) for n = 0..10000</a>

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="http://neilsloane.com/doc/tooth.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%p N:= 10: # to get a(0) to a(2^(N+1)-1)

%p a[0]:= 1:

%p a[1]:= 1:

%p for i from 1 to N do

%p for j from 0 to 2^i-1 do

%p a[2^i+j]:= a[j]+2*a[j+1]

%p od

%p od:

%p seq(a[i],i=0..2^(N+1)-1); # _Robert Israel_, May 28 2014

%Y For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, May 25 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 21:00 EST 2016. Contains 278950 sequences.