%I
%S 25,841,4900,5929,8464,11236,19044,20449,24964,28561,33124,38025,
%T 60025,64009,75076,127449,148225,170569,184900,193600,245025,281961,
%U 422500,425104,429025,461041,524176,620944,632025,970225,1024144,1044484,1113025,1283689
%N Squares which are the sum of two or more consecutive squares.
%H Donovan Johnson, <a href="/A151557/b151557.txt">Table of n, a(n) for n = 1..5077</a> (terms < 10^15)
%H Thomas Andrews, <a href="http://www.thomasoandrews.com/math/squares.html">Sum of consecutive squares equal to a square</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath147.htm">Sum of Consecutive Nth Powers Equals an Nth Power</a>
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F a(n) = A097812(n)^2.
%e 25 = 5^2 = 3^2 + 4^2
%e 841 = 29^2 = 20^2 + 21^2
%e 4900 is the sum of the first 24 squares.
%t (* First run the program for A097812 *) Union[A097812]^2 (* _Alonso del Arte_, Nov 19 2012 *)
%Y Cf. A001032. Superset is A174069.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, May 21 2009
